Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры решения задач. Задача 1. Определить натуральную величину отрезка прямой и углы его наклона к плоскостям проекций (метод прямоугольного треугольника)




Задача 1. Определить натуральную величину отрезка прямой и углы его наклона к плоскостям проекций (метод прямоугольного треугольника).

 

 


Дано: Решение:

Рис.4.3

 

Строим прямоугольный треугольник, взяв за один катет горизонтальную (или фронтальную) проекцию отрезка - проекцию А1В1 (рис.4.3), а за другой – разность удалений концов отрезка от горизонтальной плоскости проекций Dz=zВ-zА (или соответственно от фронтальной плоскости проекций - Dy=yВ-yА). Величину Dz можно определить, проведя вспомогательную линию через один из концов отрезка перпендикулярно линии связи. Гипотенуза прямоугольного треугольного треугольника А1В1Во и будет равна истинной величине отрезка АВ. Угол между гипотенузой и катетом, равным горизонтальной проекции отрезка, определяет величину угла наклона j заданного отрезка к горизонтальной плоскости проекций. Для определения угла наклона y к фронтальной плоскости проекций необходимо еще раз построить истинную величину отрезка с помощью прямоугольного треугольника А2А0В2. При этом |А0А2|=|А1В0|. Если по условию задачи требуется определить только истинную величину отрезка прямой, достаточно построить прямоугольник на одной из проекций.

 

Задача 2. Разделить отрезок АВ точкой С в отношении 2:3 (рис.4.4).

 

Дано: Решение:

 

 
 

 

Рис.4.4

 

 

Для того, чтобы построить точку С, делящую отрезок в заданном отношении, достаточно одну из проекций отрезка (на рис. 4.4) горизонтальная проекция) разделить в этом отношении, а затем построить вторую проекцию искомой точки, используя линию связи. Деление проекции А1В1 произведено с помощью теоремы Фалеса. Для этого из любого конца проекции А1В1, например из точки А1 проводим луч под произвольным углом, на котором откладываем 2+3=5 равных отрезков произвольной длины. Соединяем точки В0В1, затем проводим через С0 прямую С0С1||B0B1.

Задача 3. Достроить отрезок АВ, если длина его равна 50 мм (рис.4.5).

Задача является обратной к определению истинной величины отрезка прямой.

 
 

Рис.4.6

На прямой а зададимся произвольным отрезком АВ. С помощью прямоугольного треугольника А1В1В0 определим истинную величину отрезка АВ. Далее от точки А1 откладываем вдоль гипотенузы заданный отрезок 30 мм. Определяем искомую точку С(С12), используя положение о пропорциональности деления отрезка, при этом С0С1||В0В1.

 

Задача 5. (Задача на профильные прямые). Достроить прямую NM, параллельную прямой КL (рис.4.7).

Замечание. Задачи на профильные прямые могут быть решены различными методами, в частности, с помощью построения третьей проекции этих прямых, либо с помощью методов косоугольного параллельного проецирования путем построения, так называемых, вспомогательных прямых. К этому типу задач следует отнести задача по определению взаимного положения профильных прямых, построения точки пересечения профильных прямых, а также ряд позиционных задач, связанных с построением точек пересечения профильной прямой и плоскости. Приведем решение задачи на профильные прямые методом построения вспомогательных прямых.

 
 

Дано: Решение:

 

 

Рис.4.7

Для того, чтобы построить недостающую фронтальную проекцию N2 точки N, воспользуемся методом вспомогательных прямых. Суть его заключается в следующем. Для исходных профильных прямых методом косоугольного проектирования строятся вспомогательные прямые. По взаимному положению вспомогательных прямых судят о взаимном положении соответствующих им профильных прямых: если вспомогательные прямые параллельны, то параллельны соответствующие профильные прямые, если вспомогательные пересекаются, то исходные прямые или пересекаются или скрещиваются. Построим вспомогательную прямую для прямой KL. Для этого из точек K1 и K2 проведем лучи произвольного направления до пересечения в точке K0. Точка К0 – является вспомогательной для точки К. Аналогично строим точку L0 – вспомогательную для точки L. При этом [L1L0)|| [K1K0), [L2L0)|| [K2K0). Прямая К0L0 является вспомогательной для прямой KL. Так как точка M, принадлежащая второй профильной прямой определена однозначно (известны обе ее проекции), построим вспомогательную ей точку М0, при построении которой должна быть соблюдена параллельность проецирующих лучей на соответствующих проекциях: [М1М0)|| [K1K0)|| [L1L0) и [М2М0)|| [K2K0)|| [L2L0). Так как исходные прямые должны быть параллельны, поэтому через построенную точку М0 зададим направление вспомогательной прямой М0N0, параллельно прямой K0L0. Для нахождения точки L0 проведем проецирующий луч из точки L1, параллельно лучам на горизонтальной проекции до пересечения с прямой, проведенной из точки M0. Точка пересечения L0будет являться вспомогательной для точки L, с помощью которой отыскивается неизвестная фронтальная проекция L2 точки L.

 




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 1682; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.