Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия теории




Определение 1. Дифференциальным уравнением второго по­рядка называется уравнение вида

 

 

где х — независимая переменная, у — искомая функция, у' и у" — соответственно ее первая и вторая производные.

Примеры дифференциальных уравнений второго порядка:

 

 

Будем рассматривать уравнения, которые можно записать в виде, разрешенном относительно второй производной:

 

 

Как и в случае уравнения первого порядка, решением урав­нения (10.1) называется функция у = φ(x), определенная на некотором интервале (а, b), которая обращает это уравнение в тождество. График решения называется интегральной кривой. Имеет место теорема существования и единственности реше­ния уравнения второго порядка.

ТЕОРЕМА 1 (теорема Коши). Пусть функция f(x, у, у') и ее частные производные и , непрерывны в некоторой обла­сти D пространства переменных (x, у, у'). Тогда для любой внутренней точки М00, у0, у'0) этой области существует единственное решение уравнения (10.2), удовлетворяющее ус­ловиям:

 

 

Геометрический смысл этой теоремы (ее доказательство мы не приводим) заключается в том, что через заданную точку (x 0, y 0) на координатной плоскости Оху проходит единствен­ная интегральная кривая с заданным угловым коэффициентом y 0 ' касательной (рис. 10.1).

 

 

Условия (10.3) называются начальными условиями, а зада­чу отыскания решения уравнения (10.2) по заданным началь­ным условиям называют задачей Коши.

Общим решением уравнения (10.2) в некоторой области D называется функция у = φ(х, С 1, С 2), если она является реше­нием этого уравнения при любых постоянных величинах С 1и C 2, которые могут быть определены единственным образом при заданных начальных условиях (10.3). Частным решением уравнения (10.2) называется общее решение этого уравнения при фиксированных значениях постоянных С 1 и C 2: у = φ(х, С 10, С 20 ).

Рассмотрим для пояснения уравнение у" = 0. Его общее решение получается при двухкратном интегрировании этого уравнения:

 

 

где С 1 и C 2 — произвольные постоянные. Это решение пред ставляет собой семейство прямых, проходящих в произвольных направлениях, причем через каждую точку плоскости Охy проходит бесконечное число таких прямых. Поэтому для выделения частного решения, проходящего через заданную точку 0, y 0 ), следует задать еще и угловой коэффициент прямой, совпадающей в данном случае со своей касательной. Например, найдем частное решение, удовлетворяющее начальным условиям

 

 

т.е. нужно найти прямую, проходящую через точку M (l, 2), с угловым коэффициентом, равным единице. Подстановка на­чальных условий в общее решение уравнения приводит к сис­теме двух линейных уравнений относительно постоянных С 1и C 2

 

 

откуда С 1 = 1, C 2 = 1. Таким образом, искомое частное реше­ние — это прямая у = х + 1.

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 502; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.