Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение плоской волны, не затухающей с расстоянием, в комплексной форме имеет вид




Уровень интенсивности в свободном волновом поле.

Защита от шума, электромагнитных полей и излучений

U=umej(wt-kr)

здесь um = umjфu – комплексная амплитуда; r – радиус-вектор рассматриваемой точки; k –волновой вектор, численно равный волновому числу

k=w/c=2π/λ

где с λ – соответственно скорость распространения и длина волны.

Распространение волны всегда связано с переносом энергии, которая количественно характеризуется мгновенным вектором плотности потока энергииIt. На практике обычно пользуются понятием интенсивности волны I, которая равна модулю среднего значения вектораItза время, равное периоду T полного колебания. Найдем интенсивности звука и электромагнитной волны. Для этого введем понятие импеданса среды при распространении волны.

Комплексным импедансом среды при распространении звуковой волны назовем отношение

где р и v – соответственно звуковое давление и колебательная скорость.

Комплексным импедансом среды при распространении электромагнитной волны назовем отношение поперечных составляющих электрического (Е) и магнитного (Н) полей в данной точке:

z=E/H

Положив u=p для звука и u=E для электромагнитного поля, можно для определения интенсивности звуковой волны или для определения интенсивности электромагнитной волны использовать одну и ту же формулу*:

i-^^-^-^^ w

Эффективное значение величины u
где

При заданных стандартом референтных значениях. I*U*Z* удовлетворяющих условию I* = U*/Z* из соотношения (6.25) следует

LI=LU+LZ

**Числовые значения референтных величин различны для звука и ЭМП.

LI=101gI/I*, *(6.26)–

где LU=201guэф/Г*Г; LZ=101gz/z* уровни величин I,U,Z. Суммарная интенсивность некогерентных источников

Следовательно, уровень суммарной интенсивности

где Lit, и п – соответственно уровень интенсивности i-го источника и число источников. Если все п источников имеют одинаковый уровень интенсивности, равный Lt, то уровень суммарной интенсивности будет равен

LIE=LI+101gn

Источники направленного действия характеризуют коэффициентом направленности, равным отношению:

Ф=I/IH

где I– интенсивность волны в данном направлении на некотором расстоянии r от источника направленного действия мощностью W, излучающего волновое поле в телесный угол Ω; Iн= W/(4πr2) – интенсивность волны на том ж е расстоянии при замене данного источника на источник ненаправленного действия той же мощности. В общем случае в сферической системе координат, характеризуемой углами ø и φ, коэффициент направленности φ= φ(ø). Для осесимметричных источников коэффициент направленности не зависит от координаты ф и ф=ф(ø). Таким образом, интенсивность можно выразить через мощность источника следующим образом:

При необходимости учесть затухание в уравнение (6.23) вводят вместо волнового числа k комплексное волновое число fc, или коэффициент распространения k:

где γ и δ – соответственно коэффициент фазы и коэффициент затухания. Амплитуда затухающей волны будет равна um (δ) = umeδr a интенсивность волны будет затухать по закону:

На расстоянии r затухание в децибеллах

где δо = 8,686δ – коэффициент затухания, выраженный в децибелах на единицу длины.

Полагая Wx =I*Seиз выражения (6.28) находим уровень интенсивности с учетом затухания:

где Se и Lw=101gW/W* соответственно единичная площадь и уровень мощности относительно референтного значения W*:

Таким образом, уровень интенсивности в данной точке определяется через уровень мощности и коэффициент направленности. Формула (6.29) справедлива в свободном волновом поле, т. е. поле, не имеющем границ, от которых могло бы происходить отражение волн. Свободное поле можно создать и в помещении, если сделать последнее из материала, полностью поглощающего энергию падающей волны. Величину 101gф называют показателем направленности и обозначают ПН.

Таблица 6.7. Коэффициент затухания звука в воздухе, дБ/км

Относительная влажность возду-   Среднегеометрические частоты октавных полос, Гц  
ха,%          
                 
  0.8   1,5   3,8   12,1        
  0,4   1,3   2,8   4,9        
  0,2   0,9   2,7   5,5   9,7      

 

Для звука коэффициент затухания δо зависит от частоты звука, температуры, давления и относительной влажности воздуха. При нормальном атмосферном давлении и температуре воздуха, равной +20 °С, значения коэффициента δо даны в табл. 6.7. Для электромагнитной волны, распространяющейся в воздухе, δо≈0 (см. ниже). Следует иметь в виду, что в реальных условиях уровень затухания зависит также от погодных условий (дождь, снег, туман и т. д.), наличия растительности (трава, кустарник, деревья и т. д.), состояния атмосферы (ветер, туман, турбулентность, температурные градиенты и т. д.), наличия отражающих поверхностей (земля, преграды, экраны и т. д.) и ряда других факторов и вычисляется по формуле где eS(i) – уровень

 

затухания при наличии i-го фактора. Если затуханием можно пренебречь (S = 0), то уровень интенсивности:

Диффузное волновое поле в изолированных объемах. Волновое поле называют диффузным, если усредненная по времени объемная плотность энергии W=Wg одинакова во всех точках, а поток энергии через единичную площадку в любой точке и в любом направлении постоянен и равен 1g

Энергия волны в объеме d V равна ck=WgdK В диффузном поле эта энергия распределяется равномерно во все стороны пространства 4я. Следовстгельно, на телесный угол dQ = d5fcos6/r2 приходится часть энергии, равная d^ == w^cosOd V(\S/^nr1. В сферической системе координат с полярным углом 9 элементарный объем d^=" AinOdOdcpdr и полная энергия через площадку d*? найдется в результате следующего интегрирования:

Откуда следует, что поток энергии через единичную площадку

Ig=Wgc/4=Iв/4

Таким образом, поток энергии через единичную площадку в диффузном волновом поле в четыре раза меньше интенсивности Iв бегущих волн с той же объемной плотностью энергии. Для бегущей со скоростью с волны интенсивность I = cw, где w – усредненная объемная плотность энергии. При наличии диффузного поля понятие интенсивности теряет смысл.

Понятие диффузного поля часто используют при определении плотности потока энергии Iп в изолированных объемах. Под изолированным объемом понимается пространство, огражденное стенками (например, производственное помещение, кабина, пространство под кожухом машины и т. д.). Волны в изолированных объемах, многократно отражаясь, образуют поле, которое изменяется при изменении геометрических размеров, формы и других характеристик источника.

Волновое поле в каждой точке изолированного объема можно представить в виде совокупности волн, непосредственно приходящих в эту точку от источника, именуемую как прямая волна, и совокупности волн, попадающих в нее после отражений от границ изолированного объема – отраженная волна.

Плотность энергии Wп в любой точке изолированного объема будет складываться (рис. 6.38) из плотности энергии w прямой волны и плотности энергии Wg при диффузном поле отраженной волны: Wп = w + Wg. Умножив это уравнение на скорость с, получим

Iп=I+4Ig

Интенсивность прямой волны в общем случае определяется формулой (6.28). Выразим плотность потока энергии Ig через мощность источника. При работе источника в изолированный объем постоянно поступает энергия. При мощности источника W отраженный от границ полный поток энергии составит pW, а от единичной площадки pW/S. За единицу времени через единичную площадку границы вследствие поглощения исчезнет количество энергии, равное αIg. Так как в диффузном поле плотность энергии постоянная, то должно соблюдаться равенство рW/S=αIg. Для простоты дальнейших рассуждений здесь предполагается, что коэффициент а значительно больше коэффициента т. Уравнение (6.32) принимает вид

Рис. 6.38. Диффузное поле отраженной волны

 

Из полученного выражения видно, что в изолированном объеме плотность потока энергии получает некоторое приращение, которое аналитически обусловлено наличием множителя (1–α)/α, который велик при коэффициенте α близком к нулю.

Защитное устройство бесконечной толщины. Во многих случаях информацию можно получить, исследуя вместо реальной конструкции теоретическое защитное устройство бесконечной толщины, оно представляет собой просто среду, бесконечно простирающуюся в направлении распространения волны. Таким образом, волна из одной среды проходит в другую среду (защитное устройство), предварительно попадая на границу раздела этих сред. При падении на плоскую границу раздела двух разных сред плоская волна частично отражается, частично проходит в другую среду, оставаясь плоской, но меняя при этом свое направление распространения, т. е. преломляясь. Таким образом в общем случае существуют три волны: падающая, отраженная и преломленная (прошедшая).

При прохождении границы раздела сред без поглощения должен соблюдаться закон сохранения энергии: W- + W˜ = W+. Кроме того, на границе должны выполняться специфические для волн данной природы условия: например, для звуковых волн по обе стороны границы должны быть равны звуковые давления – принцип непрерывности звукового давления; для электромагнитных волн на границе раздела двух сред непрерывны тангенциальные составляющие электромагнитного поля. Условие непрерывности при нормальном падении волн можно записать в виде равенства на границе амплитуд поля в среде j и среде j:[um]j=[um]. Усредненный поток энергии можно выразить через интенсивность: W= IS, а интенсивность – через амплитуду и импеданс среды с помощью формулы (6.25). Тогда закону сохранения энергии можно придать виц (рис. 6.39)

W и т, U т, и т – амплитуда, соответственно, падающей, отраженной и прошедшей волн, a z k = Zk/Sk – импеданс на единицу площади (k = /, у).

В среде i существуют падающая и отраженная волна, которые на границе создают суммарную амплитуду [u,n]i == и^т + "w» в среде у существует только преломленная волна:

[Urn]} == иЩ. Условие непрерывности и закон сохранения энергии позволяют найти амплитудный коэффициент отражения Ry и амплитудный коэффициент передачи Тц при' падении волны на границу (/, j) из среды /:

При этом имеем Ту = 1 + 7?у, Ry = – Rj,. Так как значение коэффициента отражения лежит между –I и +1, то значение коэффициента передачи заключено в интервале от 0 до 2 и он всегда положителен. При равных площадях (S, = Sj) соотношения (6.34) примут такой же вид, который можно получить простой заменой ^ на ^, а при равных импсдансах сред to == ^) – заменой ^ на \/S„ (k = /, /). Амплитудные коэффициенты отражения и передачи при нормальном падении волн связаны с соответствующими энергетическими коэффициентами соотношениями:

Защитное устройство конечной толщины. В общем случае защитное устройство имеет конечную толщину. При этом волна, падая на защитное устройство, частично отражается, а частично может проходить сквозь него. Отражательную способность защитного устройства характеризуют коэффициентом отражения энергетическим и амплитудным. Прозрачные свойства защитою устройства характеризуют соответствующими коэффициентами передачи. Амплитудные коэффициенты отражения и передачи па границах разных сред будем обозначать соответственно через Ry и t{j. Эти величины определены соотношениями (6.34). Амплитудные коэффициенты отражения и передачи защитного устройства будем обозначать соответственно через R и Г, при этом в комплексной форме

где U+ т и U т- соответственно амплитуда падающей и отраженной волны на входе в защитное устройство; Uт амплитуда волны на выходе из защитною устройства.

Рассмотрим случай, когда гармоническая волна падает из среды 1 (рис. 6.40) на защитное устройство произвольной толщины h, состоящее из среды 2, ограниченной с другой стороны средой з, при этом S1 = S2 = S3. Примем, что импедансы сред соответственно равны Z1, Z2, Z3 волновое поле в среде 2 на длине h затухает по экспоненциальному закону е, где h – коэффициент распространения. При неравных импедансах сред часть энергии на границе (7, 2) отражается обратно в среду 7 в соответствии с формулой (6.34). Амплитуда падающей волны равна и+^п- Обозначив амплитуду отраженной волны через U, имеем: U= Rum.

Другая часть энергии пройдет в среду 2 и, изменившись пропорционально коэффициенту передачи Гц на границе (7, 2), претерпит в среде 2 затухание по закону е2, так что амплитуда волны в среде 2, которую обозначим через U, определится выражением й\ = Т^е^й+т- Эта волна на границе (2, 3) частично отразится и создаст в среде 2 отраженную волну, амплитуда которой с учетом затухания станет равной й^ == ^R^T^e'2^ и частично пройдет в среду J. Амплитуда прошедшей волны будет равна ид = ^^ТчзТ^ hu-^m. Волна с амплитудой йч, частично пройдет в среду 7: и^ =Г2l7l27г23^-2u^4m, а частично отразится от границы (7, 2^ и снова будет распространяться в среде 2 в виде волны с амплитудой us = rzi ТЬ^зе"3^-* /и. Процесс отражения и прохождения волн на границе сред (1, 2 и 2, 3) будет продолжаться до полного затухания волн

 

Рис. 6.39. Баланс энергии на границе раздела сред

Рис. 6.40. Схема защитного устройства конечной толщины

 

Суммируя все волны, из которых в среде 7 формируется общая отраженная волна, можно получить для амплитуды этой волны следующее выражение

Пользуясь формулой бесконечной геометрической прогрессии, найдем амплитудный коэффициент отражения защитного устройства

В среде 3 суперпозиция распространяющихся волн создаст волну, прошедшую сквозь защитное устройство. Амплитуда этой волны на выходе из защитного устройства

Просуммировав, получим согласно формуле (6.35) амплитудный коэффициент прозрачности защитного устройства конечной толщины:

С помощью формул (6.34) преобразуем коэффициенты R и Г к виду:

где zi2 = а/О и 02 = o/q. Полученные соотношения носят общий характери их можно применять при решении задач защиты как от звуковых, так и от электромагнитных полей,

Если по обе стороны от защитного устройства находится одна и та же среда, то импедансы ^и ^ равны. Тоща формулы (6.36) и (6.37) преобразуются к виду:

Амплитудные коэффициенты R и Т при нормальном падении волн связаны с энергетическими коэффициентами р и т соотношениями: р = В. 2, т = Г2, эффективность защиты

В некоторых случаях для расчета эффективности защиты удобно использовать следующую запись:

е = е. + е + <?., (6.40)

Ж f. Л ^

где ^ = (201g^)8A, ^ = 201g|T U вц = 201g|(l– рце-2V)! – слагаемые эффективности за счет ослабления волн соответственно в материале защитного устройства, при прохождении границы раздела сред (1, 2) и при многократных отражениях внутри защитного устройства. Так как с увеличением частоты коэффициент h возрастает, то ^ -> 0 и эффективность изоляции высокочастотных полей е w ek •+- е^

Прогнозирование шума. Условие безопасности при наличии звукового поля можно записать в виде неравенства

L,(f) ^(Д (6.41)

где Lp(f) = 201gp^(/)/A и 1н(/) –соответственно уровни звукового давления и их нормативные значения. Неравенство (6.41) должно выполняться на всех среднегеометрических частогах/== 63,125, 250, 500,1000, 2000, 4000, 80000 Гц и во всех точках рассматриваемого пространства с учетом времени звукового воздействия. Из соотношения (6.26) следует

L^L-L, (6.42)

Референтные значения звукового давления, интенсивности и им-педанса равны: а = 2 • 10'5 Па, 1 = 1012 Вт/м2 = 400 Па • с/м.

Характеристический импеданс среды для звука равен произведению скорости звука в среде сна ее плотность p:z = рс. Для атмосферного воздуха при р == 1,29 кг/м3 и с = 331 м/с ^ = 430 кг/(м2 • с). В табл. 6.8 приведены значения импеданса г для разных сред.

 

Таблица 6.8. Плотность, скорость звука и характеристический импеданс для некоторых сред и материалов

Среда, материал   Плотность ρ, кг/м3   Скорость звука с, м/с   Импеданс z= рс, Па∙ с/м  
Водород   0,084      
Вода       1,45 • 106  
Бензин       0,89 • 106  
Алюминий       16,5 • 106  
Медь       41,1 • 106  
Сталь       47,6 106  
Стекло     4900...5900   (12...15) • 106  
Полистирол       2,94 • 106  
Железобетон       11•106  
Кирпич       4,1 • 106  
Пробка       0,12∙106  
Резина (техниче       0,72 • 106  
ская)              

При распространении звука в атмосфере значение импсданса будет зависеть от температуры и давления. Значение ^ = 400 Па • с/м будуг соответствовать условиям, когда, например, давление и температура будут соответственно равны 0,9 • 105 Па (675 мм рт. ст.) и –27 °С или 1,013 • 1015 Па и +38,8 °С. Однако при изменении давления и температуры в пределах обычной атмосферы уровень импеданса 2^= lOlg^* незначителен и им пренебрегают, полагая, что Lp(f) = Z//).

Уровень интенсивности или плотности потока энергии можно определить, используя зависимости (6.29), (6.30), (6.33).

Для расчета уровня шума в изолированном объеме используют уравнение (6.33), которое записывают в децибелах в виде

Рис. 6.41. Схема расчета уровня шума в изолированном объеме

 

де Z/„(г, В) – уровень плотности потока энергии на сферической поверхности радиуса г, образованной телесным углом излучения Q при данном значении постоянной изолированного объема B=aS/(l– а), где S– общая площадь его внутренней поверхности с коэффициентом поглощения а; ^5 – затухание звука (см, пояснения к формуле (6.29), которое в большинстве случаев можно принять равным нулю, S(r) == 4пу^. Сферическая поверхность описывается радиусом г из акустического центра (АЦ). Если источник расположен на плоскости (и = 2п), то АЦ совпадает с проекцией геометрического центра источника на эту плоскость. Угол излучения Q зависит от местоположения источника шума: и = 2тс при расположении источника на плоско-ста; П = я – в двухгранном угле; Q == я/2 – в трехгранном угле, образованном ограждающими стенками. При отсутствии более точных данных углу О соответствует коэффициент направленности ф = (W/ ^)/(W/4nr1) = 4w/Q.

Формулу (6.43) обычно применяют, коща радиус г > 24пах> гае ^пях – максимальный размер источника.

Чтобы определить уровень шума в точке ^изолированного объема (см. рис. 6.41), в формуле (6.43) следует положить r= /\i. Найденное таким образом значение L^ сравнивают с нормами.

В выражение (6.43) входит коэффициент поглощения а, который зависит от многих факторов, например, от угла падения и частоты. На практике при расчетах по формуле (6.43) используют значения коэффициентов поглощения, полученные при измерениях в трубе или в реверберационной камере, несмотря на то, что их значения могут различаться (например, теоретически при измерениях в трубе а <, 0,95, а для того же случая в реверберационной камере а = 1,2). В практических расчетах коэффициент а вычисляют по правилу: для частот/== 63... 1000 Гц принимают а == ао, где ао определяют по табл. 6.9; для частот /= 2000...8000 Гц коэффициент а вычисляют по формуле: а = «1–(1–oio)exp(–25/), ще 6 в нужной размерности находят из табл. 6.7, а постоянная




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 641; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.06 сек.