Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Признаки систем Виды систем




Классификация систем и их характеристика

Множество систем, существующих в мире, можно классифицировать в зависимости от ряда признаков. Классификация — научный метод, заключающийся в дифференциации всего множества объектов и последующее их объединение в определённые группы на основе какого-либо признака. При общем подходе к классификации систем выделяются следующие признаки (рис. 1.2.):

· по происхождению;

· объективности существования;

· взаимодействия с окружающей средой;

· возможности действия системы от времени;

 

 

Естественные

По происхождению

Искусственные

 

 

Объективности Материальные

существования Идеальные

 

 

Взаимодействия с Открытые

окружающей средой Закрытые

 

 

Возможности действия Статические

системы от времени Динамические

 

 

Обусловленности Детерминированные

действия Вероятностные

 

 

Простые

Степени сложности Сложные

Особо сложные

 

Рис. 1.2. Классификация систем

 

· обусловленности действия;

· степени сложности.

По происхождению. В зависимости от происхождения системы могут быть естественными и искусственными. К естественным или природным следует отнести галактики, солнечную систему, планеты, материки, экосистемы, биологические системы (в том числе и человека). Искусственные (антропогенные) системы обязаны своим происхождением труду человека. Их можно разбить в основном на два подкласса — физические, социально-экономические.

Физические системы олицетворяют такие системы, у которых в качестве элементов выступают неживые составляющие. К таким системам относятся машины, оборудование, транспортные средства и т.п.

Социально-экономические системы являются объединением в организации людей и машин при выполнении определённых функций для достижения поставленных целей. С точки зрения терминологии социально-экономические системы иногда называют биофизическими или социотехническими, хотя сущность и содержание систем от этого не меняется.

К социально-экономическим системам относятся государство и народное хозяйство любой страны в целом, территориальные и городские образования, организации по производству продукции и оказанию услуг. Создавая такие системы, человек в первую очередь стремится удовлетворить свои потребности в пище, одежде, жилье, безопасности, творчестве. Потребность представляет собой внутреннее состояние психологического или физиологического ощущения недостаточности чего-либо. Постоянно возрастающие потребности человека приводят к объективной необходимости создания новых эффективных технологий и автоматизированных систем управления, способных на определенном этапе эволюционного развития человечества удовлетворить его возрастающие потребности. В дальнейшем социально-экономические системы будут рассматриваться как сложные открытые иерархические системы.

Объективности существования. По объективности существования системы делятся на материальные и идеальные. Материальные системы существуют объективно, то есть независимо от человека. Идеальные системы существуют в сознании человека в виде гипотез, образов и представлений. Такие системы выступают в виде системного построения формул, уравнений, определенных схем.

Взаимодействия с окружающей средой. Системы в зависимости от взаимодействия с окружающей средой могут быть закрытыми или открытыми.

Закрытая система характеризуется тем, что любой элемент такой системы имеет связи только с элементами этой системы. Она не имеет связей с внешней средой, ее элементы взаимодействуют друг с другом только внутри системы. Закрытые системы представляют собой абстракцию и реально таких систем не существует. Но это понятие является весьма полезным при исследовании поведения систем, у которых произошел обрыв внешних связей.

Открытой считается такая система, у которой, по крайней мере, один элемент имеет связь с внешней средой. Все реальные системы являются открытыми. Даже в абстрактной закрытой системе предполагается наличие внешних связей, которые в определенном случае считаются несущественными. В том случае, если временной разрыв или характеристик внешних связей не вызывает отклонений при функционировании системы выше заранее установленных пределов, тогда система связана с внешней средой слабо. В противном случае она связана с внешней средой сильно.

Возможности действия системы от времени. Системы в зависимости от времени действия делятся на статические и динамические.

Статические системы характеризуются неизменностью, то есть их параметры не зависят от времени. Устойчивая деятельность системы определяется постоянством элементов внешней и внутренней среды. В отличие от статических динамические системы и их параметры связаны со временем, то есть являются функцией времени. В реальной жизни статических систем практически не существует.

Обусловленности действия. По обусловленности действия системы могут быть детерминированными и вероятностными. В детерминированных системах все элементы системы взаимодействуют заранее предвиденным образом. Вероятностные системы отличаются тем, что для них нельзя сделать точного детального предсказания поведения системы и только с определенной степенью вероятности можно ожидать появления того или иного события. Для прогнозирования развития таких систем используется теория вероятностей.

Степени сложности. По этому признаку системы делятся на простые, сложные и особо сложные. Простые системы относятся к наименее сложным и характеризуются небольшим числом внутренних и внешних связей. Для сложных и особо сложных систем характерным признаком является наличие разветвленной структуры и большого числа внешних и внутренних связей. Отличительной особенностью особо сложных систем является отсутствие возможности точного и подробного их описания.

Формального определения сложной или особо сложной системы до настоящего времени пока не существует. Понятие сложной, особо сложной системы возникло в результате появления системного подхода к исследованию систем. Специфика системного подхода привела к возникновению общей теории систем.

Сложные и особо сложные системы обладают рядом особенностей. Первая особенность таких систем – целостность их реакций, как это наблюдается в биологических системах. Вторая – большая размерность, заключающаяся в большом количестве элементов, количества выполняемых функций. И третья особенность – сложность поведения системы, состоящая в том, что изменение одного параметра в системе влияет на многие другие.

Следует отметить, что приведенная классификация не претендует на свою оригинальность и законченность. Проблема состоит в том, что системы могут быть классифицированы в зависимости от конкретных целей и решаемых задач, а также постоянно проводимых исследований, возникающих на практике в конкретных ситуациях.

1.3. Основные закономерности систем

 

Все системы обладают определенными объективными закономерностями. Основными закономерностями систем являются:

· целостность;

· неаддитивность;

· эмерджентность;

· синергизм;

· обособленность;

· совместимость;

· адаптивность.

Рассмотрим сущность и характеристику приведенных закономерностей, отражающих поведение систем во времени и пространстве.

Целостность. Целостность системы характеризуется рядом свойств и особенностей. Многогранность целостности отражается с помощью таких понятий как наличие у всей системы общей цели, дифференциация, интеграция, симметрия, ассимметрия [5]. Понятие “дифференциация” отражает свойство расчленения целого на части, проявление разнокачественности его частей. Противоположное понятие “интеграция” связано с объединением совокупности соподчиненных элементов в единое образование. Симметрия и ассимметрия отражают степень соразмерности в пространственных и временных связях системы.

Система перестает быть таковой, если она теряет хотя бы одно из приведенных свойств целостной системы. Например, если динамическая система не обладает ни одним типом симметрии (sim = 0), тогда она не имеет динамических связей между элементами. С другой стороны, при бесконечном количестве типов симметрии (sim = ¥) динамическая система не является комплексом элементов, взаимодействующих для получения определенного эффекта. При условии sim = ¥ в системе реализуются такие связи, которые дают на всех выходах нулевой эффект. В связи с этим, каждый признак целостности может характеризоваться каким-либо числом. Например, число типов симметрии в системе конечно (0<sim <¥).Симметрия универсальна и широко распространена в природе.

Неаддитивность. Неаддитивность системы означает появление нового качества системы, возникающее в результате интеграции отдельных элементов или подсистем в единое целое. То есть сумма эффектов от реализации отдельных элементов или подсистем не равна эффекту от реализации системы в целом. Эффект от системы в целом больше, чем эффект от суммы эффектов отдельных элементов или подсистем. Такое положение обусловлено тем, что при декомпозиции системы происходит неизбежный разрыв горизонтальных и вертикальных связей в системе, что в свою очередь приводит к потере качества взаимодействия отдельных элементов или подсистем. В этом случае идет процесс потери эффекта от системного взаимодействия элементов и подсистем.

Эмерджетность. Эмерджетность означает появление у системы эмерджетных свойств, которые не присущи составляющим ее элементам [3]. Она является одной из форм проявления диалектического принципа перехода количественных изменений в качественные. При синтезе (формировании) системы как органического целого за счет вовлечения новых элементов или вследствие преобразования структуры взаимосвязей между элементами, ее части претерпевают качественные изменения. Так что некоторый объект как элемент целостной системы не тождествен аналогичному объекту, взятому изолированно. Например, в естественных науках эмерджетные свойства при проведении химических реакций описываются в форме естественнонаучных законов и закономерностей.

Эмерджетность в социально-экономических системах весьма разнообразна. На макроуровне с эмерджетными свойствами связаны такие явления, как социальный престиж, реализация крупномасштабных мероприятий, прежде всего в области фундаментальных исследований. На микроуровне выражением эмерджетности являются эффект крупного производства, эффект агломерации, социальные последствия ускоренной урбанизации. Любой эффект взаимосвязи и взаимодействия, неаддитивный по отношению к локальным эффектам, следует рассматривать как проявление эмерджетности. Интересы системы, связанные с усилением позитивных и ослаблением негативных эмерджетных эффектов, называются эмерджетными интересами.

Синергизм. Синергизм означает однонаправленность действий, происходящих в определенной системе, результатом чего является повышение конечного эффекта. При однонаправленной деятельности отдельных людей, объединенных единой целью и решением одних и тех же задач появляется дополнительный эффект, который в конечном итоге приводит к повышению эффективности конечного результата. Нарушение однонаправленности действий людей в любой системе приводит к потере эффекта синергизма. К сожалению, научного обоснования такого явления пока нет.

Проявление закономерности синергизма обусловлено тем, что системе, как правило присуще свойство мультипликативности. Мультипликативность заключается в том, что отдельные эффекты системы в таком случае обладают свойством умножения, а не сложения. В любой социально-экономической системе синергизм проявляется в результате однонаправленности сознательной деятельности всех членов коллектива, которые в своей деятельности обязаны руководствоваться целями и задачами системы. Наибольшее влияние на развитие положительного синергизма в социально-экономических системах оказывают высокий уровень общей и профессиональной культуры, хорошее знание психологии людей, этики, высокий уровень морально-этических качеств и профессиональное использование методов управления и мотивации труда каждого члена коллектива.

Обособленность. Обособленность означает закономерность систем или подсистем, заключающаяся в некоторой изолированности систем или подсистем от взаимодействия с другими системами или подсистемами в общей иерархии построения систем. Она проявляется прежде всего за счет принятия решений, касающихся только определенной системы, не предусматривающей интересы более высокой системы. Например, на ограниченной территории любого государства могут приниматься законы, противоречащие интересам государства в целом.

Совместимость. К числу важнейших закономерностей систем относится их совместимость. Под совместимостью понимается взаимосвязанность элементов и подсистем одной системы с элементами и подсистемами других систем. Помимо этого система должна быть совместима с системами более высокого порядка через имеющиеся у нее входы и выходы.

Адаптивность. Под адаптивностью понимается закономерность, связанная с приспособлением системы к изменяющимся внешним и внутренним параметрам ее существования. Адаптивность тесно связана с понятием “саморегулирование”. Ее сущность можно проиллюстрировать на примере подготовки космонавтов для полета в космос. Перед полетом в космос космонавты в течение длительного времени проходят подготовку в условиях, близких к условиям работы в космосе. Для этого они тренируются в условиях невесомости, перегрузок организма, соответствующих будущим условиям. То есть космонавт, как биологическая система, должен пройти процесс адаптации в земных условиях для того, чтобы сохранить свою работоспособность с прежней эффективностью в околоземном пространстве.

Знание закономерностей, которыми обладают системы, позволяет исследователям заранее предсказать форму их поведения при каких-либо изменениях в окружающей среде. Это в свою очередь позволяет принимать более эффективные решения для процесса регулирования будущих событий.

 

Вопросы для самоконтроля

1. В чем состоит сущность понятия “система”?

2. Почему можно применить теорию множеств к понятию “система”?

3. Что представляет собой информация?

4. Какие основные понятия используются при определении системы?

5. В чем состоит сущность и содержание элемента, подсистемы и связей?

6. Какие признаки выделяются при классификации систем?

7. Каким образом системы делятся по признаку сложности?

8. Какие существуют основные закономерности систем?

9. Целостность систем и в чем особенности ее проявления?

10. Что такое синергизм в системах?

11. В чем состоит сущность обособленности систем?

12. Совместимость систем и каким образом она влияет на их эффективность?

13. Адаптивность систем и в чем состоит ее назначение?

14. Что представляют собой социально-экономические системы?

15. В чем состоит сущность и содержание информационных ресурсов?

16. Информационные ресурсы внешней среды и из чего они состоят?

17. Что представляют собой информационные ресурсы внутренней среды в системе?

 

Литература

1. Акофф Р. Планирование в больших экономических системах. М.: Советское радио, 1972.

2. Рогожин С.В., Семенова С.В. Исследование систем управления. М.: ИНФО, 1998.

3. Математика и кибернетика в экономике. Словарь-справочник. М.: Экономика, 1975.

4. Ульянов С. А. Информационные технологии в управлении транспортной корпорацией. М.: Академия промышленности и менеджмента, 1999.

5. Утеуш Э.В., Утеуш З.В. Введение в кибернетическое моделирование. М.: Энергия, 1971.

6. Bertalanfy Ludwig von. General system theory. Foundations, development applications - New York: Braziller, 1969.

7. Gosling William. The design of engineering systems. - London: Heywood, 1962.

8. Hall Arthur D. A methodology for systems engineering. - Princeton, 1962.

9. Systems analysis in ecology (Symposium) Edited by Kenneth E.F., Watt. - New York, London: Acad. Press, 1966.

Глава 2




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 1875; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.043 сек.