Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Использование геотермальной энергии для теплоснабжения жилых и производственных зданий




Использование геотермальной энергии для выработки тепловой и электрической энергии.

Тепловой режим земной коры. Источники геотермального тепла.

Тема 5. Геотермальная энергия

Тепловой режим земной коры.

Подземные термальные воды (гидротермы).

Запасы и распространение термальных вод.

Состояние геотермальной энергетики в Украине.

Прямое использование геотермальной энергии.

Геотермальные электростанции с бинарным циклом.

Теплоснабжение высокотемпературной сильно минерализованной термальной водой.

Теплоснабжение низкотемпературной маломинерализованной термальной водой.

 

 

Тепловой режим земной коры. Источники геотермального тепла.

Тепловой режим земной коры

Под геотермикой (от греческих слов «гео» – земля и «термо» – тепло) понимается наука, изучающая тепловое состояние земной коры и Земли в целом, его зависимость от геологического строения, состава горных пород, магматических процессов и целого ряда других факторов.

Критерием теплового состояния земного шара является поверхностный градиент температуры, позволяющий судить о потерях тепла Земли. Экстраполируя градиент на большие глубины, можно в какой-то степени оценить температурное состояние земной коры. Величина, соответствующая углублению в метрах, при котором температура повышается на 1° С, называется геотермической ступенью.

В связи с изменением интенсивности солнечного излучения тепловой режим первых 1,5-40 м земной коры характеризуется суточными и годовыми колебаниями. Далее имеют место многолетние и вековые колебания температуры, которые с глубиной постепенно затухают. На любой глубине температура горных пород (T) приближенно может быть определена по формуле

 

(5.1)

Где tв – средняя температура воздуха данной местности, Н – глубина, для которой определяется температура; h – глубина слоя постоянных годовых температур; σ – геотермическая ступень.

 

Средняя величина геотермической ступени равна 33 м, и с углублением от зоны постоянной температуры на каждые 33 м температура повышается на 1 °С.

Геотермические условия чрезвычайно разнообразны. Это связано с геологическим строением того или иного района Земли. Известны случаи, когда увеличение температуры на 1° С происходит при углублении на 2-3 м.

Эти аномалии обычно находятся в областях современного вулканизма. На глубине 400-600 м в некоторых районах, например Камчатки, температура доходит до 150-200 °С и более.

В настоящее время получены данные о довольно глубоком промерзании верхней зоны земной коры. Геотермические наблюдения в зоне вечной мерзлоты позволили установить, что мощность мерзлых горных пород достигает 1,5 тыс. м. Так, в районе реки Мархи (приток Вилюя) на глубине 1,8 тыс. м температура составляет всего лишь 3,6 °С. Здесь геотермическая ступень составляет 500 м на 1 °С. На отдельных платформенных частях территории (на Русской платформе) температура с глубиной примерно следующая: 500 м – не выше 20° С, 1 тыс. м – 25-35° С; 2 тыс. м – 40-60° С; 3-4 тыс. м – до 100° С и более.

Подземные термальные воды (гидротермы)

В земной коре существует подвижный и чрезвычайно теплоемкий энергоноситель – вода, играющая важную роль в тепловом балансе верхних геосфер. Вода насыщает все породы осадочного чехла. Она содержится в породах гранитной и осадочной оболочек, а вероятно, и в верхних частях мантии. Жидкая вода существует только до глубин 10-15 км, ниже при температуре около 700 °С вода находится исключительно в газообразном состоянии.

На глубине 50-60 км при давлениях около 3·104 атм исчезает граница фазовости, т.е. водяной газ приобретает такую же плотность, что и жидкая вода.

В любой точке земной поверхности, на определенной глубине, зависящей от геотермических особенностей района, залегают пласты горных пород, содержащие термальные воды (гидротермы). В связи с этим в земной коре следует выделять еще одну зону, условно называемую «гидротермальной оболочкой». Она прослеживается повсеместно по всему земному шару только на разной глубине. В районах современного вулканизма гидротермальная оболочка иногда выходит на поверхность. Здесь можно обнаружить не только горячие источники, кипящие грифоны и гейзеры, но и парогазовые струи с температурой 180-200° С и выше.

Температура подземных вод колеблется в широких пределах, обусловливая их состояние, влияя на состав и свойства. В соответствии с температурой теплоносителя все геотермальные источники подразделяют на эпитермальные, мезотермальные и гипотермальные.

К эпитермальным источникам обычно относят источники горячей воды с температурой 50-90 °С, расположенные в верхних слоях осадочных пород, куда проникают почвенные воды.

 

К мезотермальным источникам относят источники с температуройводы 100-200 °С.

В гипотермальных источниках температура в верхних слоях превышает 200 °С и практически не зависит от почвенных вод.

Происхождение термальных вод может быть связано с деятельностью тепловых очагов, но чаще всего вода, тем или иным способом попадая в пласт породы, совершает долгий путь, пока не приходит в контакт с тепловым потоком или постепенно разогревается, отбирая тепло у пород.

Жидкая фаза воды и тепло могут происходить из одного источника лишь в том случае, если таковым является остывающий магматический расплав. Перегретая вода в виде паровых струй выделяется из расплава вместе с газами и легколетучими компонентами, устремляясь в верхние, более холодные горизонты. Уже при температурах 425-375 °С пар может конденсироваться в жидкую воду; в ней растворяется большинство летучих компонентов – так появляется гидротермальный раствор «ювенильного» (первозданного) типа. Под термином «ювенильные» геологи подразумевают воды, которые никогда прежде не участвовали в водообороте; такие гидротермы в прямом смысле слова являются первичными, новообразованными. Полагают, что подобным образом сформировалась вся поверхностная гидросфера морей и океанов в эпоху молодой магматической активности планеты, когда только-только зарождались твердые консолидированные «острова» материковых платформ.

Прямой противоположностью «ювенильных» вод являются воды ин-фильтрационного происхождения.Если«ювенильные»воды,отделяясь отмагматического расплава, поднимаются к поверхности, то преобладающее движение инфильтрационных вод – от поверхности вглубь. Источник вод этого типа представляет собой атмосферные осадки или вообще поверхностные водотоки. По поровому пространству пород или трещинным зонам эти воды проникают (инфильтруются) в более глубокие горизонты. По пути движения они насыщаются различными солями, растворяют подземные газы, нагреваются, отбирая тепло у водопроводящих пород.

В зависимости от глубины проникновения инфильтрационных вод они становятся более или менее нагретыми. При средних геотермических условиях для того, чтобы инфильтрационные воды стали термальными (т.е. с температурой более 37 °С), необходимо их погружение на глубину 800-1000 м.

Инфильтрационные гидротермы способны изливаться на поверхность в виде горячих источников, если существует возможность разгрузки воды на поверхность по разломам, выклиниваниям слоев, что происходит в более низких относительно области питания участках. Причем, чтобы вода оставалась термальной, подъем ее к поверхности должен происходить очень быстро, например, по широким трещинам разломов. При медленном подъеме гидротермы остывают, отдавая аккумулированное тепло вмещающим породам. Однако если пробурить скважину на глубину 3-4 тыс. м и обеспечить быстрый подъем воды, можно получить термальный раствор с температурой до 100 °С. Все это касается областей со средними геотермическими показателями и не относится к вулканическим районам или зонам недавнего горнообразования.

Вулканический тип термальных вод следует выделить особо.Как уже говорилось, горячие источники вулканических районов нельзя целиком считать «ювенильными», т. е. магматическими. Опыт исследований показывает, что в подавляющем случае вода вулканических терм имеет поверхностное инфильтрационное происхождение. Помимо гейзеров вулканический тип гидротерм включает грязевые грифоны и котлы, паровые струи и газовые фумаролы.

Все перечисленные типы термальных вод имеют разнообразнейший химический и газовый состав. Их общая минерализация колеблется от ультрапресных категорий (менее 0,1 г/л) до категорий сверхкрепких рассолов (более 600 г/л). Гидротермы содержат в растворенном состоянии различные газы: активные (агрессивные), такие, как углекислота, сероводород, атомарный водород, и малоактивные – азот, метан, водород.

В геотермальной энергетике могут быть использованы практически все виды термальных вод: перегретые воды – при добыче электроэнергии, пресные термальные воды – в коммунальном теплообеспечении, солоноватые воды – в бальнеологических целях, рассолы – как промышленное сырье.

 

Запасы и распространение термальных вод

К областям распространения месторождений термальных вод относятся: вулканическое кольцо бассейна Тихого океана, Альпийский складчатый пояс, рифтовые долины континентов, срединно-океанические хребты, платформенные погружения и предгорные краевые прогибы (рис. 5.1).

По своему происхождению месторождения термальных вод можно подразделить на два типа, различающиеся способом переноса тепловой энергии.

Первый тип образуют геотермальные системы конвекционного происхождения,отличающиеся высокой температурой вод,разгружающихся надневную поверхность. Это районы расположения современных или недавно потухших вулканов, где на поверхность выходят не только горячие воды, но и пароводяная смесь с температурой до 200 °С и более. На сегодняшний день все геотермальные электростанции работают в районах современного вулканизма.

К месторождениям конвекционного типа относятся также гидротермальные проявления так называемых рифтовых зон, характеризующихся активным тектоническим режимом и умеренно повышенными геотермическими градиентами – 45-70 °С/км. (Рифтовые зоны и связанные с ними термоаномалии, как правило, простираются на огромные расстояния. Например, Северо-Мексиканский бассейн термальных вод протянулся на 1,5 тыс. км, от северо-восточной части Мексики до Флориды. Одна из скважин здесь с глубины 5859 м дает пароводяную смесь с температурой 273 °С, причем этот флюид выходит при высоком давлении.)

Второй тип геотермальных месторождений образуется при преобладающем кондуктивном прогреве подземных вод, сосредоточенных в глубоких платформенных впадинах и предгорных прогибах. Они располагаются в невулканических районах и характеризуются нормальным геотермическим градиентом – 30-33 °С/км.

Бурением на нефть и газ, а частично и на воду обнаружены сотни подземных артезианских бассейнов термальных вод, занимающих площади в несколько миллионов квадратных километров. Как правило, артезианские бассейны, расположенные в равнинных областях и предгорных прогибах, содержат воду с температурой 100-150° С на глубине 3-4 км.

 

 

Рис. 5.1. Области производства геотермальной энергии в системе третичных орогенических поясов (заштриховано): 1 – Калифорния; 2 – Серро Прие-то; 3 – Мексика, Идальго; 4 – Сан-Сальвадор; 5 – Чили, Атакама; 6 – Исландия; 7 –Араак-Лак; 8 – Лардерелло, Монте-Амиата; 9 – Венгерский бассейн; 10 – Айдин- Денизли; 11 – Кавказ; 12 – Суматра; 13 – Ява; 14 – Новая Гвинея; 15 – Новая Британия; 16 – Фиджи, Новые Гебриды; 17 – Вайракей, Вайотапу; 18 – Филиппины; 19 – Япония; 20 – Камчатка.

 

Можно без преувеличения сказать, что любой отмеченный на карте предгорный прогиб, который был сформирован в эпоху альпийского горообразования, содержит бассейн термальных вод. Таковы артезианские бассейны предгорных прогибов Пиренеев, Альп, Карпат, Крыма, Кавказа, Копет-Дага, Тянь-Шаня, Памира, Гималаев. Термальные воды этих бассейнов демонстрируют уникальное многообразие химических типов от пресных (питьевых) до рассольных, употребляющихся как минеральное сырье для извлечения ценных элементов. Больше половины всех известных минеральных (лечебных) вод выходят в виде источников или выводятся скважинами в пределах альпийских предгорных и межгорных прогибов. Опыт показывает, что термальные воды подобных малых бассейнов являются наиболее перспективными для комплексного использования в практических целях.

Подсчеты запасов термальных вод основываются на имеющихся данных об объемах гравитационных вод, заключенных в пластах, объемах самих водоносных горизонтов и коллекторских свойствах слагающих их горных пород. Запасы термальных вод представляют собой общее количество выявленных термальных вод, находящихся в порах и трещинах водоносных горизонтов, имеющих температуру 40-200° С, минерализацию до 35 г/л и глубину залегания до 3,5 тыс. м от дневной поверхности.

С развитием глубокого бурения на 10-15 км открываются многообещающие перспективы вскрытия высокотемпературных источников тепла. На таких глубинах в некоторых районах страны (исключая вулканические) температура вод может достигнуть 350° С и выше.

Районы выхода на поверхность кристаллического фундамента (Балтийский, Украинский, Анабарский щиты) и приподнятые горные сооружения (Урал, Кавказ, Карпаты и т. д.) совершенно не имеют запасов термальных вод. На участках погружения фундамента, т. е. при увеличении толщины осадочного чехла, в недрах наблюдается некоторое «потепление» до 35-40 °С на платформах и до 100-120 °С в глубоких предгорных впадинах.

К числу районов, имеющих максимально «теплые» земные недра, несомненно, относится Курило-Камчатская вулканическая зона. Здесь нагретость пород и содержащихся в них вод зависит не только от глубины их залегания, но в большей степени от близости к вулканическим центрам и разломам в земной коре.

Таким образом, температура пород, а следовательно, и вод находится в зависимости от глубины залегания и от района, который характеризуется большей или меньшей геотермической активностью.

 

Состояние геотермальной энергетики в Украине

Состояние и перспективы в Украине. Определено, что создание эффективных геоТЭС в Украине возможно при условии реализации новейших технологий добычи геотермальной энергии с использованием геотермальных циркуляционных систем, а также технической реализации систем по закачиванию в недра Земли использованной высокоминерализованной воды.

Потенциал. Целесообразность развития геотермальной энергетики в Украине определяется наличием значительных ресурсов геотермальной энергии Украины, которые по своему тепловому эквиваленту превышают запасы традиционного энергетического топлива.

В Украине обширные термальные зоны на глубинах менее 4 км есть в Крыму и в Карпатах. Общий потенциал подземных вод регионов Прикарпатья и Крыма составляет 1,5 млн м3 в сутки или 550 млн м3 за год.

Тепло этих месторождений можно использовать посредством создания подземных циркуляционных систем (ПЦС). Опытная ПЦС построена в Украине возле г. Ужгорода для теплоснабжения теплично-парникового комбината и животноводческой фермы; глубина данной системы 2,3 км, температура 124 °С. Геотермальные месторождения, пригодные для технической эксплуатации, зарегистрированы и в других областях: Полтавской, Черниговской, Харьковской, Донецкой.

Ресурсы геотермальной энергии на территории Украины по тепловому эквиваленту превышают запасы традиционного топлива.

Оценка показателей технического и целесообразно экономического потенциала проводилась с учетом технической базы, экономической ситуации и заданий «Программы развития НВИЭ» в Украине по разделу «Геотермальная энергетика» до 2014 г..

Территориальное распределение ресурсов. Среди районов Украины, перспективных для развития геотермальной энергетики, следует выделить Закарпатье. По геологическим и геофизическим данным, на глубинах до 6 км температура горных пород достигает там 230…275 °С. Значительные ресурсы геотермальной энергии сосредоточены в Крыму, где наблюдаются самые большие геотермические градиенты. Температура горных пород в ряде районов на глубине 3,5…4 км может достигать 160…180 °С.

Некоторые характеристики перспективных для геоТЭС районов Украины. Согласно полученным оценкам запасов геотермальной энергии, приоритетными районами первоочередного строительства геоТЭС в Украине являются такие:

в Крыму — Керченский полуостров;

в Предкарпатье — Львовская область;

отдельные месторождения в Харьковской, Полтавской и Донецкой областях.

Технические особенности геотермальной электроэнергетики (ограниченные значения верхних температур циклов и высокая минерализация геотермальных теплоносителей) весьма специфичны, поэтому на первых порах особое внимание необходимо сконцентрировать на введении в действие нескольких опытно-экспериментальных ТЭС небольшой мощности для отработки технологии и оборудования. Так, ограниченные значения верхних температур термодинамических циклов геоТЭС приводят к необходимости использования специального оборудования, специальных рабочих тел и увеличения количества низкопотенциальной теплоты. Высокая минерализация геотермальных теплоносителей обусловливает необходимость использования коррозионностойких материалов, а наличие растворенных в геотермальных водах газов (С02 и других) — вспомогательного оборудования, т. е. систем газовыделения и утилизации отработанного теплоносителя, что приводит к значительному увеличению затрат мощности на собственные нужды (до 50 % и более).

Использование геотермальной энергии для выработки тепловой и электрической энергии.

 

Прямое использование геотермальной энергии

 

Геотермальные станции в вулканических районах базируются на месторождениях пароводяной смеси, добываемой из природных подземных трещинных коллекторов с глубины 0,5-3 км. Пароводяная смесь в среднем имеет степень сухости 0,2-0,5 и энтальпию 1500-2500 кДж/кг. В среднем одна эксплуатационная скважина обеспечивает электрическую мощность 3-5 МВт, средняя стоимость бурения составляет 900 долларов за метр.

Геотермальная электростанция с непосредственным использованием природного пара. Самая простая и доступная геотермальная энергоустановка представляет собой паротурбинную установку с противодавлением.

Природный пар из скважины подается прямо в турбину с последующим выходом в атмосферу или в устройство, улавливающее ценные химические вещества. В турбину с противодавлением можно подавать вторичный пар или пар, получаемый из сепаратора. По этой схеме электростанция работает без конденсаторов, и отпадает необходимость в компрессоре для удаления из конденсаторов неконденсирующихся газов. Эта установка наиболее простая, капитальные и эксплуатационные затраты на нее минимальны. Она занимает небольшую площадь, почти не требует вспомогательного оборудования и ее легко приспособить как переносную геотермальную электростанцию (рис. 5.2).

 

 

 

Рис.5.2. Схема геотермальной электростанции с непосредственным использованием природного пара: 1 – скважина; 2 – турбина; 3 – генератор; 4 – выход в атмосферу или на химический завод.

 

Турбогенераторные установки с противодавлением не препятствуют промышленному использованию химических веществ, содержащихся в природном теплоносителе. Так, например, в природном паре некоторых месторождений Италии содержится 150-700 мг/кг борной кислоты, и при помощи подобных установок можно добывать этот ценный продукт одновременно с выработкой электроэнергии.

Рассмотренная схема может стать самой выгодной для тех районов, где имеются достаточные запасы природного пара. Рациональная эксплуатация обеспечивает возможность эффективной работы такой установки даже при переменном дебите скважин.

В Италии работает несколько таких станций. Одна из них – мощностью 4 тыс. кВт при у дельном расходе пара около 20 кг/сек, или 80 т пара в час; другая – мощностью 16 тыс. кВт, где установлено четыре турбогенератора мощностью по 4 тыс. кВт. Последняя снабжается паром от 7-8 скважин.

В подобных схемах требуется значительное количество пара, который с большим успехом может быть использован в турбинах конденсационного типа.

Геотермальная электростанция с конденсационной турбиной и прямым использованием природного пара –это наиболее современнаясхема для получения электрической энергии.

Пар из скважины подается в турбину. Отработанный в турбине, он попадает в смешивающий конденсатор. Смесь охлаждающей воды и конденсата уже отработанного в турбине пара выпускается из конденсатора в подземный бак, откуда забирается циркуляционными насосами и направляется для охлаждения в градирню. Из градирни охлаждающая вода опять попадает в конденсатор (рис. 5.3).

По такой схеме работает геотермальная электростанция Лардерелло, использующая природный пар, самая крупная в Италии. Она была спроектирована в начале второй мировой войны, но вступила в строй только в послевоенные годы. На электростанции установлено четыре турбогенератора мощностью по 26 тыс. кВт и два турбогенератора по 9 тыс. кВт. Последние предназначены для покрытия собственных нагрузок.

 

 

 

Рис. 5.3. Схема геотермальной электростанции с конденсационной турбиной и прямым использованием природного пара: 1 – скважина; 2 – турбина; 3 – генератор; 4 – насос; 5 – конденсатор; 6 – градирня; 7 – компрессор; 8– сброс.

 

Ни один из установленных здесь турбогенераторов в течение многих лет не переводился в резерв. Коэффициент использования установленной мощности составляет 98%. Стабильная работа геотермальной электростанции Лардерелло-3 открыла путь к конструированию новых электростанций с использованием конденсационных турбин. По такой схеме с некоторыми изменениями работают многие геотермальные электростанции: Лардерелло-2 (Италия), Вайракей (Новая Зеландия) и др.

Благодаря техническим усовершенствованиям потребление пара на каждый киловатт мощности стало значительно меньше. Сейчас расход пара на новой электростанции Лаго (Италия) составляет уже 8 кг/квт-ч.

 

Геотермальные электростанции с бинарным циклом

 

Геотермальная электростанция с паропреобразователем. Конденсационная турбина с паропреобразователем работает на вторичном паре. Эти станции наиболее выгодны там, где природный пар имеет высокую температуру и большое содержание газов. Схема электростанции следующая: природный пар из скважины поступает в паропреобразователь и свое тепло отдает вторичному теплоносителю, после чего чистый вторичный пар направляется в конденсационную турбину. Отработанный пар идет в конденсатор. Неконденсирующиеся газы, содержащиеся в паре, отделяются в паропреобразователе и выбрасываются либо в атмосферу, либо идут на химические заводы. Недостатком этой схемы является снижение параметров пара перед турбиной. По сравнению с электростанциями, непосредственно использующими природный пар, удельный расход пара здесь меньше на 30%.

Геотермальная электростанция, работающая по этой схеме (рис. 5.4), позволяет полностью использовать все химические вещества, содержащиеся в природном паре.

 

 

Рис. 5.4. Схема геотермальной электростанции с паропреобразователем: 1– скважина; 2 – паропреобразователь; 3 – турбина; 4 – генератор; 5 – конден-сатор; 6 – вакуумный насос; 7 – градирня; 8 – насос; 9 – дегазатор; 10 – сброс.

 

Опыт подтверждает, что стоимость строительства геотермальной электростанции с паропреобразователем немного больше стоимости электростанции с прямым использованием пара в конденсационной турбине. По схеме с паропреобразователем были построены электростанции Лардерелло-2 и Кастельнуово (Италия). На станции Лардерелло-2 установлено 7 турбин мощностью по 11 тыс. квт. Удельный расход пара на этой электростанции — 14 кг/квт.

Геотермальные электростанции с конденсационной турбиной, работающие на отсепарированном паре, строятся там, где из скважины получают пар с большим содержанием воды. Пар или пароводяная смесь из скважины направляется в специальное устройство, расположенное на скважине. Под давлением в сепараторе происходит разделение пароводяной смеси на пар и воду. Отсепарированный пар по трубопроводу направляется в турбину и т. д.

Конденсационные турбины, работающие на отсепарированном паре, нашли применение в строительстве геотермальных электростанций в России (Паужетское месторождение на Камчатке), Исландии (месторождение Хверагерди) и в других странах.

Рассмотренная схема имеет свои преимущества. Полученный в сепараторе пар практически не содержит газов, что облегчает работу турбин.

Схема Паужетской ГеоТЭС

В настоящее время проведены геологические, геофизические, гидрогеологические и другие исследования тепло-аномальных районов Камчатки; обнаружены большие ресурсы термальных вод с высокой температурой.

Для получения электрической энергии за счет глубинного тепла Земли и строительства опытно-промышленной геотермальной станции гидрогеологи-разведчики сочли наилучшим районом долину реки Паужетки, расположенную на юге Камчатки, в 35 км от побережья Охотского моря.

В 1957 г. началось бурение разведочных скважин. При бурении на термальные воды, особенно в зоне вулканических проявлений, применяли глинистый раствор и, непрерывно промывая, охлаждали ствол скважины, что предотвратило пароводяные выбросы. Всего была пробурена 21 скважина глубиной от 220 до 480 м. Каждая в среднем давала около 10 кг/сек пароводяной смеси с теплосодержанием 170 ккал/кг. Одна из них с глубины 250 м вскрыла температуру 195 °С, другая с глубины 375 м – 200° С.

По химическому составу Паужетские гидротермы принадлежат к типу хлоридных натриевых вод. Общая минерализация их составляет 1,0-3,4 г/л, температура на выходе из скважин – 144-200 °С, давление на устье скважины – 2-4 атм, рН от 8,0 до 8,2. Термальные воды содержат повышенные количества кремнекислоты (250 мг/л) и борной кислоты (150 мг/л). Пар насыщен также газами: углекислым – 500 мг/кг, сероводородом – 25 мг/кг, аммиаком – до 15 мг/кг и др.

По предварительным данным, Паужетское геотермальное месторождение даст возможность получать 30-50 тыс. кВт электрической мощности. Схема опытно-промышленной станции, предложенная институтом Тепло-электропроект, представлена на рис 5.5.

 

Рис. 5.5. Схема Паужетской опытно-промышленной геотермальной электростанции: 1 – скважина; 2 – сепаратор; 3 – паропровод; 4 – турбина; 5 – генератор; 6 – смешивающий конденсатор; 7 – водоструйный эжектор; 8 – эжекторный насос; 9 – барометрическая труба; 10 – бак охлаждающей воды; 11 – сливной колодец; 12 – насос горячей воды; 13 – трубопровод холодной воды

 

Пароводяная смесь из скважины поступает в сепаратор (емкостью 10 м3, с нагрузкой парового объема 600-800 м3/час), расположенный на скважине. Здесь при давлении 1,5 атм происходит разделение пара и воды. Отсепарированный пар по паропроводу поступает к турбинам. Горячая вода с температурой 100-110 °С сбрасывается в реку, и только небольшая часть ее идет по трубам для отопления и горячего водоснабжения жилых зданий поселка и электростанции. На станции установлены смешивающие конденсаторы. Поскольку конденсат отработавшего в турбинах пара здесь бесполезен, такие конденсаторы компактнее и требуют меньше охлаждающей воды. Для удаления газов из конденсаторов установлены водоструйные эжекторы с расходом воды 800-900 м3/час.

На ней установлены две турбины типа «МК-2,5» производства Калужского турбинного завода мощностью по 2,5 тыс. кВт каждая. Станция дает ток Озерновскому поселку, рыбокомбинату и близлежащим населенным пунктам.

 

Использование геотермальной энергии для теплоснабжения жилых и производственных зданий.

Введение

 

Для отопления и горячего водоснабжения жилых и производственных зданий необходима температура воды не ниже 50-60° С.

Наиболее рациональное использование термальных вод может быть достигнуто при последовательной их эксплуатации: первоначально в отоплении, а затем в горячем водоснабжении. Но это представляет некоторые трудности, так как потребность в горячей воде по времени года относительно постоянна, тогда как отопление является сезонным, оно зависит от климатических условий района, температуры наружного воздуха, времени года и суток.

В настоящее время разработаны различные схемы использования термальных вод для отопления и горячего водоснабжения жилых и промышленных зданий.

Теплоснабжение высокотемпературной сильно минерализованной термальной водой. Т ермальная вода имеет температуру выше80°С,но сильно минерализована. В этих условиях возникает необходимость в устройстве промежуточных теплообменников. Принципиальное решение такой схемы показано на рис. 5.6.

Здесь термальная вода из скважин разделяется на две параллельные ветви: одна направляется в теплообменник отопления и затем в теплообменник 1-й ступени подогрева воды для горячего водоснабжения; вторая — в теплообменник 2-й ступени.

Чтобы избежать зарастания трубопровода, термальную воду используют с промежуточным теплообменником. Высокоминерализованную воду из скважины подают в резервуар со змеевиками, по которым поступает пресная речная вода. Нагретая пресная вода идет к потребителю, а выпадающие из термальных вод соли осаждаются в резервуаре и на наружных поверхностях змеевика. Недостатком схемы с теплообменником является сокращение срабатываемого потенциала термальной воды (на конечную разность темпера-тур в теплообменнике).

Вышеописанная схема весьма применима для Закарпатья. Термальная вода на курорте «Береговое» использовалась только в бальнеологических целях. Глубокие скважины вскрыли высокотермальную воду, и появилась возможность отапливать ею жилые и производственные здания, теплично-парниковые хозяйства. Для этого вода с температурой 78° С из скважин поступает в теплообменник типа «труба в трубе», который отдает часть тепла пресной воде. Затем пресная вода направляется по трубам в жилые и производственные здания для горячего водоснабжения, технологических нужд, в теплицы, где выращивают в год два урожая овощей. Охлажденная в теплообменнике до температуры 37-38° С термальная вода подается в ванны и души бальнеолечебницы.

 

 

Рис. 5.6. Принципиальная схема геотермального теплоснабжения с теплообменниками: 1 – скважина; 2 – теплообменник системы отопления; 3 – теплообменник горячего водоснабжения 1-й ступени; 4 – то же, 2-й ступени; 5 – система отопления.

Теплоснабжение низкотемпературной маломинерализованной термальной водой. Т ермальная вода маломинерализована,но с низким тепловым потенциалом (температура ниже 80 °С). Здесь требуется повышение потенциала термальной воды. Осуществить это можно разными методами, приведем основные из них:

а) подача термальной воды параллельно на отопление и горячее водоснабжение и пиковый догрев отопительной воды;

б) бессливная система геотермального теплоснабжения;

в) применение тепловых насосов;

г) совмещенное применение тепловых насосов и пикового догрева.

По схеме (а) термальная вода из скважин поступает в систему горячеговодоснабжения и параллельно в пиковую котельную. Здесь она догревается до температуры, соответствующей метеорологическим условиям, и подается в системы отопления (рис. 5.7). Данная схема особенно целесообразна для районов с дорогим бурением, так как пиковая котельная позволяет сократить число скважин.

 

Рис. 5.7. Принципиальная схема геотермального теплоснабжения с параллельной подачей геотермальной воды на отопление и горячее водоснабжение и пиковым догревом воды на отопление: 1 – скважина; 2 – пиковый догреватель; 3 – система отопления; 4 – бак-аккумулятор.

Схема (б) представляет более сложный вариант предыдущей схемы.Здесь термальная вода, поступающая из скважин, нагревается до температуры 160-200 °С, что обусловливается климатическими условиями и позволяет достичь равенства воды в тепловых сетях и системах горячего водоснабжения.

На рис. 5.8 приведена принципиальная схема такой установки. Из скважины 0 термальная вода поступает в котельную 8, затем, пройдя через дегазатор 7 и химводоочистку 2, подается в нагреватель 5. Перегретая вода направляется в жилые дома. Абонентский ввод каждого дома оборудован смесителем 4, в котором сетевая вода смешивается с отработанной водой из системы отопления. Смесь требуемой температуры последовательно проходит систему отопления 5, а затем полностью расходуется в системе горячего водоснабжения 6. Предусмотрена возможность сброса отработанной воды из системы отопления в канализацию, а также установка бака-аккумулятора 7 для одного или группы зданий.

 

 

Рис. 5.8. Принципиальная схема бессливной системы геотермального теплотеплоснабжения: 0 – скважина; 1 – дегазатор; 2 – химводоочистка; 3 – водоподогреватель; 4 – смеситель; 5 – система отопления; 6 – система горячего водоснабжения; 7 – бак-аккумулятор; 8 – котельная.

 

 

С повышением температуры наружного воздуха расход воды на вводе остается постоянным, часть воды поступает в систему горячего водоснабжения, минуя систему отопления по специальной перемычке. При этом с помощью терморегулятора поддерживается одинаковая температура воды в системе горячего водоснабжения в течение всего отопительного сезона.

В летний период термальная вода подается на горячее водоснабжение, минуя подогреватель, по обводному трубопроводу в котельной.

Осуществление такой схемы позволяет полнее использовать тепло термальной воды, сократив до минимума число скважин, уменьшить диаметр тепловых сетей и их протяженность, снизить металлоемкость систем отопления. Однако в такой системе пиковая котельная превращается по существу в базисный генератор тепла для отопления, который работает весь отопительный сезон. Отсюда большая установленная мощность котельной и большой расход топлива. Существует мнение, что температура догрева не должна превышать 100°С из-за опасности возникновения коррозии и накипи. В таком случае распределительные сети рекомендуется выполнять двухтрубными. Это дополнительный фактор, снижающий эффективность системы.

Все сказанное заставляет критически относиться к данной схеме и выбор ее обосновывать тщательным экономическим расчетом в каждом конкретном случае.

Схема (в) предусматривает утилизацию тепла низкотемпературныхтермальных источников при помощи теплового насоса. На рис. 5.9 показана типовая схема теплоснабжения с компрессионным тепловым насосом.

 

Рис. 5.9. Принципиальная схема геотермального теплоснабжения с применением теплового насоса: 1 – скважина; 2 – испаритель; 3 – компрессор; 4 – конденсатор; 5 – регулирующий вентиль.

Горячая вода из скважин 1 подается к испарителю теплового насоса 2, где происходит передача ее тепла быстро испаряющемуся рабочему веществу. Образующиеся пары сжимаются компрессором 3 и направляются в конденсатор 4, где конденсируются при более высоком давлении, отдавая тепло воде, циркулирующей в системе отопления. Охлажденная вода сбрасывается в канализацию. Эффективность схемы повышается при работе теплового насоса летом в режиме холодильной машины. В целях более полного срабатывания тепла термальной воды была предложена более сложная модификация этой схемы с тепловыми насосами.

Схема (г) –комплексная система теплоснабжения с трансформациейтепла сбросной воды в сочетании с пиковым ее подогревом и качественным регулированием (рис. 5.10).

Вода из источника 1, пройдя очистку 2, перекачивается насосной станцией 3 в количестве Qa по однотрубному теплопроводу 4 и поступает к потребителям с температурой ta. Один поток воды Q 1 догревается в пиковой котельной 5 до температуры tn и поступает в смеситель 7, где к нему подмешивается отработанная вода, предварительно подогретая в конденсаторах теплового насоса 8 до температуры t g.

Отработанная вода с температурой t 0 после системы отопления б разветвляется на три потока. Одна часть Q 3 поступает в конденсаторы теплового насоса 8 и смеситель 7. Вторая часть ее направляется в испарители теплового насоса 9, где она охлаждается до температуры t x и сбрасывается. Третья часть направляется в смеситель 12, из которого вода с температурой tr в количестве Qr поступает в бак-аккумулятор 11 и систему горячего водоснабжения 10.

 

 

Рис. 5.10. Схема комплексного геотермального теплоснабжения с применением пикового догрева и тепловых насосов: 1 – скважина; 2 – водоочистка; 3– насосная станция; 4 – транзитный теплопровод; 5 – пиковый догреватель; 6 – система отопления; 7 и 12 – смесители; 8 – конденсаторы; 9 – испарители; 10 – система горячего водоснабжения; 11 – бак-аккумулятор.

 

Второй поток воды источника Q 2 через вентиль B 1 поступает в смеситель 12 и сеть горячего водоснабжения. Если температура геотермальной воды ниже температуры tr, то вода догревается до tr в котельной 5 и через вентиль B 2 поступает в систему горячего водоснабжения в количестве Qr.

С целью повышения отопительного коэффициента и обеспечения более гибкого регулирования теплонасосные агрегаты включаются в систему теплоснабжения по последовательно-противоточной схеме так, чтобы нагрев воды в конденсаторе 8 и охлаждение сбрасываемой воды в испарителях 9 осуществлялось в несколько ступеней.

С изменением температуры наружного воздуха качественное регулирование осуществляется пиковой котельной, тогда как теплопроизводительность теплового насоса и потребление воды из скважин остаются неизменными. После отключения пиковой котельной качественное регулирование осуществляется тепловым насосом. Это обеспечивает равномерный годовой график потребления воды из скважин.

В этой системе доля использования тепла геотермальной воды тем больше, чем ниже расчетная температура в системах отопления. Поэтому здесь целесообразно применение конвекторной или панельной систем отопления, где расчетная температура 40-45° С.

Сравнение этой системы с бессливной показывает, что удельный расход геотермальной воды в схеме с термотрансформаторами почти в два раза превышает таковой в бессливной системе, между тем коэффициент эффективности оказывается больше. Суммарная доля топливоиспользующих установок в годовом тепловом балансе минимальна. Это обстоятельство создает предпосылки для применения данной схемы в районах, где затраты на перевозку топлива могут превысить затраты на бурение большого числа скважин.

 





Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 4238; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.156 сек.