Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример. Дифференциальные уравнения




Дифференциальные уравнения.

Пример.

Пример.

а) . Применяя формулу Ньютона-Лейбница, вычислим этот интеграл:

б) . Вычислим этот интеграл, используя метод замены переменной:

в) . Применяя формулу интегрирования по частям получим:

121.-130. Вычислить площадь фигуры, ограниченной заданными линиями. Сделать чертеж.

121. , . 126.

122. , . 127.

123. , . 128.

124. , . 129.

125. , . 130.

а) Вычислить площадь фигуры, ограниченной параболой и прямой .

Находим точки пересечения данных кривых и строим искомую фигуру

Площадь фигуры, ограниченной снизу кривой , сверху – кривой , вычисляет интеграл , где и - абсциссы точек пересечения этих кривых, причем

 

Следовательно, имеем

131 – 140. Найти общее решение дифференциального уравнения.

131. а). ; б). ; в). .

132. а). ; б). ; в). .

133. а). ; б). ; в). .

134. а). ; б). ; в). .

135. а). ;б). ; в). .

136. а). ; б). ; в). .

137. а). ; б). ; в). .

138. а). ; б). ; в). .

139. а). ; б). ; в). .

140. а). ; б). ; в). .

а) .

Данное уравнение является уравнением с разделенными переменными. Проинтегрируем обе его части:

, получим: .

б). .

Для решения данного уравнения используем тот факт, что . Так как переменные в данном случае разделить нельзя, то выразим

, отсюда по правилу пропорции получаем:

, или .

В данном случае ; .

Следовательно, данное уравнение – однородное. Делаем замену переменной

, , . После замены получим:

, , .

Получили уравнение с разделяющимися переменными. Разделяя переменные, получим: , .

Интегрируя, находим общее решение

, ,

.

Возвращаясь к старой переменной, получаем общий интеграл

.

в). .

Данное уравнение линейное. Ищем решение в виде , .

, .

Решаем уравнение. , , , , .

Подставляя полученное значение в уравнение, имеем:

, , .

Общее решение или .

, , , .

 

141–150. Найти общее решение дифференциального уравнения:

141. а). ; б). ; в). .

142. а). ; б). ; в). .

143. а). ; б). ; в). .

144. а). ; б). ; в). .

145. а). ; б). ; в). .

146. а). ; б). ; в). .

147. а). ; б). ; в). .

148. а). ; б). ; в). .

149. а). ; б). ; в). .

150. а). ; б). ; в). .

Пример. а). .

Составим соответствующее характеристическое уравнение:

,

, .

Так как корни характеристического уравнения действительные, различные, следовательно, общее решение однородного уравнения имеет вид , то есть имеем

.

б). .

Составим соответствующее характеристическое уравнение:

,

.

Так как корни характеристического уравнения действительные, одинаковые, следовательно, общее решение однородного уравнения имеет вид , то есть имеем

.

в). .

Составим соответствующее характеристическое уравнение:

 

. Решим его при помощи вычисления дискриминанта:

. Так как в данном случае , то для вычисления квадратного корня используем равенство . Так как (комплексная единица), то в данном случае . Таким образом, имеем в данном случае комплексные корни:

.

Так как корни характеристического уравнения комплексно-сопряженные, следовательно, общее решение однородного уравнения имеет вид , где и - соответственно действительная и мнимая части комплексных корней. В данном случае . Таким образом, общее решение исходного уравнения имеет вид:

.

 




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 426; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.