Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция № 26 Электрооборудование компрессо­ров, вентиляторов, их автоматиза­ция, схемы управления




 

Наибольшее применение для приводов компрессоров получили асинхронные двигатели с короткозамкнутым ротором и синхронные двигатели. Регулирование производительности компрессоров в этих случаях осуществляется путем автоматического открывания всасывающих клапанов с помощью регулятора давления. Регулирование производительности может осуществляться также периодическим включением компрессорных агрегатов с учетом графика нагрузки и давления в воздухопроводах, которое контролируется специальным манометром; контакты манометра вводятся в схему управления двигателем.

Компрессоры предназначены для получения сжатого воздуха или га­за с повышенным давлением с целью его использования в пневматиче­ских устройствах (пневмоустановки, пневмоинструмент, пневмоавтома­тика и т.п.).

Центробежные компрессоры создают давление воздуха на напоре до 15 • 105 Па при высокой производительности и не требуют дополнительных систем для обеспечения нормальной работы.

Они просты по устройству и надежны в эксплуатации.

Турбинные и ротационные центробежные компрессоры отличаются конструкцией роторов (1) и корпусов (2).

В турбинном компрессоре на роторе, расположенном в корпусе эксцен­трично, установлены лопасти (4).

Увеличение давления при вращении создается за счет сжатия воздуха между корпусом и лопастями.

В ротационном компрессоре эксцентрично расположенный ротор имеет пластины (5), которые перемещаются в направляющих ротора под действием центробежных сил при его вращении.

Увеличение давления создается путем сжатия воздуха в камерах, обра­зуемых пластинами и корпусом, к которому они плотно прилегают при вращении.

Для работы компрессора без потребления воздуха (газа) предусмотрен обходной трубопровод с клапаном (6).

На всасывающих и напорных трубопроводах, обычно, устанавливаются невозвратные вентили (3), которые исключают обратный ход воздуха при остановке компрессоров.

Особенностью центробежных компрессоров является равномерное ис­течение воздуха повышенного давления, что не требует установки дополни­тельных приспособлений для выравнивания неравномерности нагрузки на ЭП. При отсутствии противодавления справедливы соотношения, приведен­ные для вентиляторов.

Поршневые компрессоры создают давление воздуха на напоре до 10* Па при сравнительно малой производительности.

Рабочим органом является поршень (7), возвратно-поступательное движе­ние которого обеспечивается ЭД через кривошипно-шатунный механизм (10). При движении поршня вниз воздух поступает через впускной клапан (8), а вверх — выталкивается через выпускной клапан (9).

Особенностью поршневых компрессоров является неравномерность вы­хода воздуха на напоре, что требует дополнительных устройств, выравни­вающих неравномерность.

Сглаживание пульсаций возможно установкой маховика на валу при­водного ЭД.

Для уменьшения колебаний давления воздуха у потребителя после ком­прессора устанавливают ресивер (промежуточный воздухосборник), кото­рый представляет собой герметичный резервуар.

Наличие трущихся частей, а следовательно, и повышенного нагрева тре­бует вспомогательных обслуживающих систем:

- системы охлаждения (СВО — система водяного охлаждения),

- системы смазки (масляная система).

Наибольшая неравномерность получается у компрессоров одинарного действия (подача воздуха только при движении поршня вверх, как показано на рис. 2.1-2).

Для уменьшения неравномерности применяются компрессоры двойного действия (подача воздуха производится при движении поршня в обе стороны).

Высокие давления воздуха (газа) получают в многоступенчатых ком­прессорах, в которых сжатие происходит последовательно в нескольких ци­линдрах или камерах.

Таким образом, очевидно, что поршневые компрессорные установки яв­ляются более сложными конструкциями по сравнению с центробежными.

Основное назначение компрессорных установок (КУ) — это обеспече­ние технологического процесса. В цехах устанавливается КУ небольшой мощности, а на предприятиях, при централизованном обеспечении потреби­телей сжатого воздуха — компрессорные станции (КС).

График потребления сжатого воздуха на промышленных предприятиях, как правило, имеет в течение суток переменный характер.

Для обеспечения нормальной работы потребителей необходимо, чтобы давление воздуха поддерживалось постоянным.

Давление в воздуховоде зависит от потребления воздуха и производи­тельности компрессора. Если расход равен производительности, то давление воздуха в магистрали будет номинальным.

Если потребление воздуха становится больше производительности, то давление падает, и наоборот.

Таким образом, основным условием автоматизации КУ является под­держание постоянства давления воздуха в магистрали.

Производительность КУ регулируется следующими способами:

• путем открывания всасывающих клапанов с помощью регулятора дав­ления,

• периодическим включением компрессорных агрегатов в соответствии с графиком потребления воздуха и величиной давления в магистрали.

Устройства автоматизации

Основным устройством, контролирующим давление воздуха в магист­рали и формирующим сигнал в схему управления является электрокон­тактный манометр.

Так как КУ большой мощности и большого давления (поршневые) об­служиваются вспомогательными системами, то в их составе действуют при­надлежащие им устройства автоматизации, обеспечивающие защиту КУ при отказе.

Например, отказ системы водяного охлаждения контролируется струй­ным реле, а системы смазки — реле давления масла.

Так как при сжатии воздух нагревается, то необходимо не только его охлаждать, но и контролировать температуру воздуха датчиками температу­ры и формировать аварийно-предупредительные сигналы.

Все сигналы, сформированные устройствами автоматизации, вводятся в релейно-контактные схемы управления электроприводом.

 

На основании заданной для вентилятора или насоса подачи и суммарного напора, а для компрессора — подачи и удельной работы сжатия — определяется мощность на валу, в соответствии с которой может быть осуществлен выбор мощности приводного двигателя.

Для центробежного вентилятора, например, формула определения мощности на валу выводится из выражения энергии, сообщаемой движущемуся газу в единицу времени.

Пусть F — сечение газопровода, м2; m — масса газа за секунду, кг/с; v — скорость движения газа, м/с; ρ — плотность газа, м3; ηв, ηп — кпд вентилятора и передачи.

Известно, что

Тогда выражение для энергии движущегося газа примет вид:

откуда мощность на валу приводного двигателя, кВт,

В формуле можно выделить группы величин, соответствующих подаче, м3/с, и напору вентилятора, Па:

Из приведенных выражений видно, что

Соответственно

здесь с, с1 с2 — постоянные величины.

Отметим, что вследствие наличия статического напора и конструктивных особенностей центробежных вентиляторов показатель степени в правой части может отличаться от 3.

Аналогично тому, как это было сделано для вентилятора, можно определить мощность на валу центробежного насоса, кВт, которая равна:

где Q — подача насоса, м3/с;

Нг— геодезический напор, равный разности высот нагнетания и всасывания, м; Нс — суммарный напор, м; P2 — давление в резервуаре, куда перекачивается жидкость, Па; P1 — давление в резервуаре, откуда перекачивается жидкость, Па; ΔН — потеря напора в магистрали, м; зависит от сечения труб, качества их обработки, кривизны участков трубопровода и т. д.; значения ΔН приводятся в справочной литературе; ρ1 — плотность перекачиваемой жидкости, кг/м3; g = 9,81 м/с2 — ускорение свободного падения; ηн, ηп — к. п. д. насоса и передачи.

С некоторым приближением для центробежных насосов можно принять, что между мощностью на валу и скоростью существует зависимость Р = сω3 и М = сω2. Практически показатели степени у скорости меняются в пределах 2,5— 6 для различных конструкций и условий работы насосов, что необходимо учитывать при выборе электропривода.

Указанные отклонения определяются для насосов наличием напора магистрали. Отметим попутно, что очень важным обстоятельством при выборе электропривода насосов, работающих на магистрали с высоким напором, является то, что они весьма чувствительны к снижению скорости двигателя.

Основной характеристикой насосов, вентиляторов и компрессоров является зависимость развиваемого напора Н от подачи этих механизмов Q. Указанные зависимости представляются обычно в виде графиков НQ для различных скоростей механизма.

На рис. 1 в качестве примера приведены характеристики (1, 2, 3, 4) центробежного насоса при различных угловых скоростях его рабочего колеса. В тех же координатных осях нанесена характеристика магистрали 6, на которую работает насос. Характеристикой магистрали называется зависимость между подачей Q и напором, необходимым для подъема жидкости на высоту, преодоления избыточного давления на выходе из нагнетательного трубопровода и гидравлических сопротивлений. Точки пересечения характеристик 1,2,3 с характеристикой 6 определяют значения напора и производительности при работе насоса на определенную магистраль при различных скоростях.

Рис. 1. Зависимость напора Н насоса от его подачи Q.

 

Пример 1. Построить характеристики Н, Q центробежного насоса для различных скоростей 0,8ωн; 0,6ωн; 0,4ωн, если характеристика 1 при ω = ωн задана (рис. 1).

1. Для одного и того же насоса

Следовательно,

2. Построим характеристику насоса для ω = 0,8ωн.

Для точки б

Для точки б'

Таким образом, можно построить вспомогательные параболы 5, 5', 5"... которые на оси ординат при Q = 0 вырождаются в прямую, и характеристики QH для различных скоростей насоса.

Мощность двигателя поршневого компрессора может быть определена на основании индикаторной диаграммы сжатия воздуха или газа. Такая теоретическая диаграмма приведена на рис. 2. Некоторое количество газа сжимается в соответствии с диаграммой от начального объема V1 и давления P1 до конечного объема V2 и давления P2.

На сжатие газа затрачивается работа, которая будет различна в зависимости от характера процесса сжатия. Этот процесс может осуществляться по адиабатическому закону без отдачи тепла, когда индикаторная диаграмма ограничена кривой 1 на рис. 2; по изотермическому закону при постоянной температуре, соответственно кривая 2 на рис. 2, либо по политропе кривая 3, которая показана сплошной линией между адиабатой и изотермой.

 

Рис. 2. Индикаторная диаграмма сжатия газа.

Работа при сжатии газа для политропического процесса, Дж/кг, выражается формулой

где n — показатель политропы, определяемый уравнением pVn = const; P1 — начальное давление газа, Па; P2 — конечное давление сжатого газа, Па; V1 — начальный удельный объем газа, или объем 1 кг газа при всасывании, м3.

Мощность двигателя компрессора, кВт, определяется выражением

здесь Q — подача компрессора, м3/с; ηк — индикаторный к. п. д. компрессора, учитывающий потери мощности в нем при реальном рабочем процессе; ηп — к. п. д. механической передачи между компрессором и двигателем. Так как теоретическая индикаторная диаграмма существенно отличается от действительной, а получение последней не всегда возможно, то при определении мощности на валу компрессора, кВт, часто пользуются приближенной формулой, где исходными данными являются работа изотермического и адиабитического сжатия, а также к. п. д. компрессора, значения которых приводятся в справочной литературе.

Эта формула имеет вид:

где Q — подача компрессора, м3/с; Аи — изотермическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3; Аа — адиабатическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3.

Зависимость между мощностью, на валу производственного механизма поршневого типа и скоростью совершенно отлична от соответствующей зависимости для механизмов с вентиляторным характером момента на валу. Если механизм поршневого типа, например насос, работает на магистраль, где поддерживается постоянный напор Н, то очевидно, что поршню при каждом ходе приходится преодолевать постоянное среднее усилие независимо от скорости вращения.

Среднее значение мощности

но так как Н = const, то

Следовательно, среднее значение момента на валу насоса поршневого типа при постоянном противодавлении не зависит от скорости:

Мощность на валу центробежного компрессора, так же как у вентилятора и насоса, с учетом сделанных ранее оговорок пропорциональна третьей степени угловой скорости.

На основании полученных формул определяется мощность на валу соответствующего механизма. Для выбора двигателя в указанные формулы следует подставить номинальные значения подачи и напора. По полученной мощности может быть выбран двигатель продолжительного режима работы.





Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 5323; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.