Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Связующие материалы 3 страница




Полезными также являются алмазные материалы с различными примесями, определяющими, например, их полупроводниковые свойства. В настоящее время одной из наиболее используемых примесей является бор. Общепринятым является представление о том, что замещающие углерод атомы бора представляют собою устойчивые акцепторные центры. Введение примеси бора в процессе роста алмаза и такие методы, как ионная имплантация, позволяют осуществлять легирование бором до пределов, когда доминирует прыжковая проводимость. Таким образом, проблему создания алмаза р-типа с использованием бора в качестве акцептора можно признать решенной. Для получения полупроводниковых алмазов p-типа можно в качестве легирующей добавки использовать мышьяк.

Для создания алмазного полупроводника n-типа используют в качестве легирующей компоненты Р2О5, например, при получении на кремниевых подложках ориентации (100) поликристаллических алмазных пленок. Причем, считается, что на границах зерен не возникает высоких потенциальных барьеров. Одним из методов легирования алмазов является ионная имплантация. Использование ионной имплантации применительно к алмазу представлялось естественным уже сравнительно давно. В первых опубликованных работах сообщалось о возникновении проводящих слоев на поверхности облученных кристаллов; однако интерпретация результатов не была однозначной из-за возможностей фазовых переходов углерода в другие его модификации. Впоследствии были выяснены условия, при которых происходит практически полное восстановление структуры алмазной решетки, сильно нарушенной при имплантации ионов примесей. В настоящее время существует возможность создавать области необходимой геометрии с дырочной проводимостью, используя внедрение ионов бора по заданным программам. Особое внимание привлекает имплантация ионов с большими (в несколько мегаэлектронвольт) энергиями.

Помимо чисто научного интереса необычные свойства алмаза делают его весьма полезным для технических целей. Этот драгоценный камень широко используется как абразив в промышленности, как режущий инструмент в хирургии и как теплоотвод в электронных приборах, перспективно его использование в микроэлектронике. Были получены автоэмиссионные катоды (холодные эмиттеры) на нанокристаллических углеродных и наноалмазных пленках. Стоимость природных кристаллов алмаза размером 2-4 мм невелика, что делает их доступными для использования в таких приборах, как дозиметры или фотоэлементы для анализа ультрафиолетового излучения Солнца. Методом ионной имплантации были созданы матрицы униполярных транзисторов и диодов на пластинах природного алмаза.

Карбин

Кристаллическая форма карбина состоит из параллельно ориентированных цепочек углеродных атомов с sp-гибридизацией валентных электронов в виде прямолинейных макромолекул полиинового (-С≡С-С≡С-...) или кумуленового (=С=С=С=...) типов. Эти модификации различаются по составу продуктов озонирования. Облучение пучком электронов секундной длительности тонких аморфных пленок углерода, выращенных распылением графита ионным пучком, приводит к кристаллизации карбина. Обращают внимание эксперименты, в которых удалось получить монокристаллические пленки карбина распылением ионным пучком графита в условиях ионного облучения наращиваемой пленки. Карбин конденсируется в виде белого углеродного осадка на поверхности при облучении пирографита лазерным пучком света, обладает полупроводниковыми свойствами и наличием ширины запрещенной зоны ~1 эВ, а при сильном нагревании переходит в графит. Под действием света электропроводность карбина сильно увеличивается. На этом свойстве основано первое практическое применение карбина - в фотоэлементах. Карбин не утрачивает фотопроводимости при температуре до 500oC.

В настоящее время исследуется ударно-волновая кристаллизация аморфного карбина (аморфного линейно-цепочечного углерода) и рентгено-аморфного двумерно-упорядоченного линейно-цепочечного углерода; лазерный синтез кристаллического карбина из пиролитического графита и рентгено-аморфного двумерно-упорядоченного линейно-цепочечного углерода; ударно-волновой синтез кристаллического карбина из пиролитического графита. Обсуждаются различные механизмы полиморфного превращения графит-карбин, проблема существования области термодинамической стабильности карбина на фазовой диаграмме углерода, гипотетическое участие карбина (в качестве промежуточного продукта) в стимулированном ударной волной полиморфном превращения высокоориентированного графита в алмаз.

Углеродные волокна, сверхпрочный конструкционный материал последних лет также может состоять из поликристаллического карбина. Углеродные волокна получают термической обработкой полимерных волокон в среде благородных газов. Это сверхпрочные нити, обладающие проводниковыми свойствами. Из них в настоящее время изготовляют пуленепробиваемые жилеты, конструкционные элементы самолетов, ракет, сами ракетные двигатели, костюмы, обогреваемые электричеством и многое другое.

Фуллерены

В настоящее время понятие "фуллерены" применяется к широкому классу многоатомных молекул углерода Сn, где n - 60 и более, и твердым телам на их основе. Термин «фуллерен» берет свое начало от имени американского архитектора Бакминстера Фуллера, который применял такие структуры при конструировании куполов зданий. По этой причине молекулу С60 часто называют бакминстерфуллереном.

История современных исследований фуллеренов началась с работы (1985 г.), в которой молекула С60 была зарегистрирована как кластер с магическим числом атомов в нем. Второй этап исследования фуллеренов связан с созданием в 1990 г. относительно простой эффективной технологии производства фуллеренов в макроскопических количествах. Эта технология позволяет перерабатывать графит в С60 с производительностью порядка 1 г/ч, что обеспечивает практически все потребности исследований. Производительность синтеза С70 оказывается примерно на порядок ниже, однако и этого достаточно для исследования не только тонких пленок, но и поликристаллов, изготовленных из молекул данного сорта.

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита. На рис. 3 показана схема установки для получения фуллеренов. Распыление графита осуществляется при пропускании через электроды переменного тока в атмосфере гелия. Осажденную графитовую сажу выдерживают в течение нескольких часов в кипящем толуоле, при этом получается темно-бурая жидкость. При выпаривании получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи, в нем содержится до 10% фуллеренов С60 (90%) и С70 (10%). Описанный дуговой метод получения фуллеренов получил название «фуллереновая дуга».

Наиболее удобный и широко распространенный метод экстракции фуллеренов из продуктов термического разложения графита, а также последующей сепарации и очистки фуллеренов, основан на использовании растворителей и сорбентов. На первой стадии фуллерен-содержащая сажа обрабатывается с помощью неполярного растворителя, в качестве которого используются бензол, толуол и другие вещества. При этом фуллерены, обладающие значительной растворимостью в указанных растворителях, отделяются от нерастворимой фракции, содержание которой в фуллерен содержащей фазе составляет обычно 70-80 %. Типичное значение растворимости фуллеренов в растворах, используемых для их синтеза, составляет несколько десятых долей мольного процента. Выпаривание полученного таким образом раствора фуллеренов приводит к образованию черного поликристаллического порошка, представляющего собой смесь фуллеренов различного сорта. Типичный масс спектр подобного продукта показывает, что экстракт фуллеренов на 80 - 90 % состоит из С60 и на 10 -15% из С70. Кроме того, имеется небольшое количество (на уровне долей процента) высших фуллеренов, выделение которых из экстракта представляет довольно сложную техническую задачу. Экстракт фуллеренов, растворенный в одном из растворителей, пропускается через сорбент, в качестве которого может быть использован алюминий, активированный уголь либо оксиды (Al2O3, SiO2) с высокими сорбционными характеристиками. Фуллерены собираются этим металлом, а затем экстрагируются из него с помощью чистого растворителя. Эффективность экстракции определяется сочетанием сорбент-фуллерен-растворитель и обычно при использовании определенного сорбента и растворителя заметно зависит от типа фуллерена. Поэтому растворитель, пропущенный через сорбент с сорбированным в нем фуллереном, экстрагирует из сорбента поочередно фуллерены различного сорта, которые тем самым могут быть легко отделены друг от друга. Дальнейшее развитие описанной технологии получения сепарации и очистки фуллеренов, основанной на электродуговом синтезе фуллерено-содержащей сажи и её последующем разделении с помощью сорбентов и растворителей, привело к созданию установок, позволяющих синтезировать С60 в количестве одного грамма в час.

Металл-фуллереновые плёнки обычно получают методом термического распыления в вакууме. Поскольку фуллерены начинают сублимировать при температурах ниже 700 К, а температура испарения металлов значительно выше, то для получения плёнок используют два испарителя. Концентрация фуллеренов в плёнках определяется скоростями поступления компонентов (атомов и молекул), которые регулируются температурой испарителей и их расположения относительно подложки. Температуры испарителей выбираются по экспериментальным зависимостям скорости испарения от температуры.

Для получения толстых металлических плёнок с небольшим (менее 1 %) содержанием фуллеренов может использоваться метод электрохимического осаждения, при котором порошок фуллерита или раствор фуллеренов смешивается с электролитом. Для повышения однородности электролита используется ультразвуковой вибратор. Технологическими параметрами являются состав электролита, плотность и режим тока, мощность, длительность импульсов и частота сопутствующего лазерного излучения.

Полимер-фуллереновые материалы получают следующими способами:

1. совместное распыление и осаждение компонентов;

2. смешиванием порошка фуллерита с расплавом полимера и последующим охлаждением полученной смеси;

3. смешиванием раствора фуллеренов с раствором полимеров и последующей сушкой.

В зависимости от температуры, типа растворителя, соотношения количеств полимера, фуллерена, растворителя, степени перемешивания могут образовываться материалы разного типа. От режима сушки зависят пористость, внутренние механические напряжения, адгезия, размер фуллереновых ассоциатов и места их закрепления в полимерных цепочках.

Образование эндофуллеренов возможно несколькими способами:

1. внедрение ионов чужеродных атомов при ионной имплантации;

2. проникновение внутрь фуллеренов мелких частиц (протонов, дейтронов) с последующим присоединением электронов;

3. захват фуллеренами чужеродных ионов или атомов при больших амплитудах колебаний атомов молекулы фуллерена.

Метод ионной имплантации эффективен при получении эндофуллеренов N@C60, Li@C60, K@C60, Rb@C60, Na@C60, La@C60. Для получения ионов обычно используют стандартный ионный источник либо тлеющий разряд. Зависимости отношения количества эндофуллеренов к количеству полых фуллеренов от энергии ионного пучка имеют явно выраженный максимум при некоторой энергии ионов, что указывает на существование «энергетического окна» для образования эндофуллеренов. Наличие максимума легко объяснить, исходя из простых физических соображений. При малых энергиях ионам не удается преодолеть энергетический барьер, препятствующий их проникновению внутрь фуллерена. При очень больших энергиях столкновение иона с молекулой фуллерена приводит к ее разрушению. Для ионов большего радиуса энергия, необходимая для проникновения внутрь молекулы, больше, поэтому энергия, соответствующая максимуму выхода фуллеренов, больше.

Гидрирование и дейтерирование кристаллического фуллерена может проводится в стандартной установке высокого давления при давлении 1,0—2,5 МПа и температуре порядка 673 К. Предварительная дегазация фуллерена осуществляется при его нагревании до 500 К в вакууме (~1 Па). Для более полного гидрирования и получения образцов с гомогенным распределением компонентов процесс проводится в циклическом термическом режиме, т. е. образец под давлением водорода нагревается до 673 К, выдерживается при этой температуре, затем реакционная смесь охлаждается до комнатной температуры, и цикл повторяется несколько раз.

Если для получения чистого С60 в макроколичествах требуется только использование электродугового разрядника, то получение высших фуллеренов требует последующей сложной и дорогой процедуры экстракции, основанной на идеях жидкостной хроматографии. Этот способ позволяет не только отделить, но и накопить более редко встречающиеся фуллерены С76, С84, С90, и С94. Эти процессы идут параллельно получению С60, отделение которого позволяет обогатить смесь высшими фуллеренами. Необходимо отметить, что массовая доля высших фуллеренов С76, С84, С90 и С94 в углеродном конденсате, который используется для получения С60 и С70 не превышает 3-4%. Данный метод позволяет вымыть из конденсата С60 и С70 и получить таким способом экстракт, содержащий высшие фуллерены определенного состава в миллиграммовых количествах.

Кристаллические фуллерены и пленки представляют собой полупроводники с шириной запрещенной зоны 1,2-1,9 эВ и обладают фотопроводимостью. При облучении видимым светом электрическое сопротивление кристалла фуллерита уменьшается. Фотопроводимостью обладают не только чистый фуллерит, но и его различные смеси с другими веществами. Фуллерены в кристаллах характеризуются относительно невысокими энергиями связи, поэтому в таких кристаллах уже при комнатной температуре наблюдаются фазовые переходы, приводящему к ориентационному разупорядочению и размораживанию вращения молекул фуллеренов. Кристаллы С60, легированные атомами щелочных металлов обладают металлической проводимостью, и переходят в сверхпроводящее состояние в диапазоне от 19 до 55 К в зависимости от типа щелочного металла. Еще более высокая температура сверхпроводящего перехода (вплоть до 100К) ожидается для сверхпроводников на основе высших фуллеренов.

При нормальном давлении фуллериты С60 представляют собой мягкие кристаллы со слабым ван-дер-ваальсовым взаимодействием между молекулами с плотностью около 1,6 г/см3 и объемным модулем сжатия В ~ 18 ГПа. При обработке фуллеритов высокими давлениями и температурами удается синтезировать целый спектр кристаллических и разупорядоченных фаз углерода с плотностями, лежащими в диапазоне от "фуллеритных" до "алмазных" и с высокими механическими характеристиками. Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур. Обладая высокой электроотрицательностью, они выступают в химических реакциях как сильные окислители. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами. Так, недавно получены пленки полифуллерена, в которых молекулы С60 связаны между собой не ван-дер-ваальсовским, как в кристалле фуллерита, а химическим взаимодействием. Эти плёнки, обладающие пластическими свойствами, являются новьм типом полимерного материала. Интересные результаты достигнуты в направлении синтеза полимеров на основе фуллеренов. При этом фуллерен С60 служит основой полимерной цепи, а связь между молекулами осуществляется с помощью бензольных колец. Такая структура получила образное название "нить жемчуга".

Фуллерены отличаются высокой химической инертностью по отношению к процессу мономолекулярного распада. Так, молекула С60 сохраняет свою термическую стабильность вплоть до 1700К, а константа скорости мономолекулярного распада в температурном диапазоне 1720-1970К измеряется в пределах 10-300 сек-1, что соответствует значению энергии активации распада 4.0± 0.3 эВ. Однако в присутствии кислорода, окисление этой формы углерода до СО и СО2 наблюдается уже при существенно более низких температурах - порядка 500К. Процесс, продолжающийся несколько часов приводит к образованию аморфной структуры, в которой на одну молекулу С60 приходится двенадцать атомов кислорода, при этом молекула фуллерена практически полностью теряет свою форму. Дальнейшее повышение температуры до 700К приводит к интенсивному образованию СО и СО2 и приводит к окончательному разрушению упорядоченной структуры фуллеренов. Как следует из экспериментальных данных, энергия присоединения атома кислорода к молекуле С60 составляет примерно 90 ккал/моль, что примерно вдвое превышает соответствующее значение для графита. При комнатной температуре окисление С60 происходит только при условии облучения фотонами с энергией в диапазоне 0.5-1200 эВ, что объясняется необходимостью образования ионов О2-, обладающих повышенной реакционноспособностью.

Поскольку молекулы фуллеренов обладают сродством к электрону, в химических процессах они могут проявлять себя как слабые окислители. Данное свойство фуллеренов обнаружилось уже в одном из первых экспериментов по их химическому превращению, где была осуществлена гидрогенизация С60. Продуктом этой реакции стала молекула С60Н36. Такой результат представляется достаточно удивительным, так как молекула С60 обладает 30 двойными связями, каждая из которых могла бы присоединять два атома водорода. По-видимому некоторые из двойных связей в структуре фуллерена остаются нереакционоспособными. Предполагается, что между двумя связями, присоединившими водород, имеется одна не прореагировавшая. Присоединение к С60 радикалов, содержащих металлы платиновой группы, позволяет получить ферромагнитные материалы на основе фуллерена. В настоящее время известно, что более трети элементов периодической таблицы могут быть помещены внутрь молекулы С60. Имеются сообщения о внедрении атомов лантана, никеля, натрия, калия, рубидия, цезия, атомов редкоземельных элементов, таких как тербий, гадолиний и диспрозий. В настоящее время в научной литературе обсуждаются вопросы использования фуллеренов для создания фотоприемников и оптоэлектронных устройств, катализаторов роста алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также в качестве красителей для копировальных машин. Фуллерены применяются для синтеза металлов и сплавов с новыми свойствами.

Фуллерены планируют использовать в качестве основы для производства аккумуляторных батарей. Эти батареи, принцип действия которых основан на реакции присоединения водорода, во многих отношениях аналогичны широко распространенным никелевым аккумуляторам, однако, обладают, в отличие от последних, способностью запасать примерно в пять раз больше удельное количество водорода. Кроме того, такие батареи характеризуются более высокой эффективностью, малым весом, а также экологической и санитарной безопасностью по сравнению с наиболее продвинутыми в отношении этих качеств аккумуляторами на основе лития. Такие аккумуляторы могут найти широкое применение для питания персональных компьютеров и слуховых аппаратов.

Растворы фуллеренов в неполярных растворителях (сероуглерод, толуол, бензол, тетрахлорметан, декан, гексан, пентан) характеризуются нелинейными оптическими свойствами, что проявляется, в частности, в резком снижении прозрачности раствора при определенных условиях. Это открывает возможность использования фуллеренов в качестве основы оптических затворов- ограничителей интенсивности лазерного излучения. Возникает перспектива использования фуллеренов в качестве основы для создания запоминающей среды со сверхвысокой плотностью информации. Фуллерены могут найти применение в качестве присадок для ракетных топлив, смазочного материала.

Большое внимание уделяется проблеме использования фуллеренов в медицине и фармакологии. Обсуждается идея создания противораковых медицинских препаратов на основе водо-растворимых эндоэдральных соединений фуллеренов с радиоактивными изотопами. Найдены условия синтеза противовирусных и противораковых препаратов на основе фуллеренов. Одна из трудностей при решении этих проблем – создания водорастворимых нетоксичных соединений фуллеренов, которые могли бы вводиться в организм человека и доставляться кровью в орган, подлежащий терапевтическому воздействию.

Пленка С76 является эффективным катализатором при нанесении искусственных алмазных покрытий из углеродной плазмы. Превращение кристаллического фуллерена в алмаз происходит при значительно более мягких условиях, чем в случае традиционно используемого для этой цели графита. При комнатной температуре указанное превращение наблюдается при давлении 20 ГПа, в то время как для аналогичного превращения графита его необходимо подвергнуть давлению в 35 - 40 ГПа при температуре около 900К. Давление, требуемое для превращения фуллерена в алмаз снижается с ростом температуры.

Другими уникальными соединениями фуллеренов являются эндоэдральные комплексы. В этих соединениях, уже синтезируемых в макроколичествах, один или несколько атомов металлов, неметаллов или даже отдельных молекул помещаются внутрь углеродной сферы. В частности, ожидается, что на основе эндоэдральных комплексов в будущем будут созданы высокоэффективные лекарства против рака. Так, нетрудно представить себе, что внутрь такой сферы можно поместить атом высокоактивного нуклида, а на сферу поместить органические хвосты, делающие подобное соединение специфичным тем или иным структурам или органам (например - раковой опухоли) организма. Таким образом можно будет добиться того, что, будет проводится селективная радиотерапия без повреждения соседствующих органов и тканей.

Получение динамических голограмм на основе фуллеренов показали их перспективность для использования в устройствах обработки оптической информации, обращения волнового фронта. Высокая степень нелинейности среды с фуллеренами может быть использована для сжатия оптического импульса в наносекундной области длительности. Фуллеренсодержащие материалы могут использоваться в устройствах восстановления изображения, удвоения и утроения частоты падающего излучения.

Фуллериты обладают фотопроводимостью в спектральном диапазоне, оптимальном для создания солнечных элементов. Спектр фотопоглощения фуллеритовых плёнок лежит в диапазоне длин волн от 280 до 680 нм, а квантовый выход, представляющий собой вероятность образования электрон-ионной пары при поглощении одного фотона, составляет 0,9. Полимеризация фуллеренов под действием светового излучения и образование нерастворимой в органических растворителях плёнки позволяет использовать фуллерены в качестве нового материала для фоторезистивных масок. С помощью маски из полимеризованной плёнки C60 достигнуто высокое разрешение (примерно 20 нм) при травлении кремния электронным пучком.

В настоящее время для изготовления эндопротезов широко используются нержавеющая сталь, сплавы кобальта с хромом, титан и его сплавы. Однако несоответствие жесткости (твердости, упругости) материала протеза и кости ведет к изменению напряжения скелета, что приводит к ресорбции имплантанта и выходу его из строя. Кроме того, материал протеза подвержен и коррозионному разрушению в достаточно агрессивной среде. Углерод является основным элементом в живых организмах и широко используется в биомедицинских целях, не вызывая существенных отрицательных реакций. Исследования in vitro с использованием мышиных тканей и тесты in vivo на овцах показали очень хорошую биосовместимость углеродных плёнок. При взаимодействии углеродных кластеров с живой тканью и кровью в отличие от металлов не происходит проникновения активных ионов в организм. Даже при отделении от имплантанта достаточно крупных углеродных частиц не возникает вредных побочных реакций иммунной системы.

Результаты проведенных исследований структуры, фазового состава, химической устойчивости в кислотных и щелочных средах композиционных титанфуллереновых покрытий, а также структурно-морфологические характеристики клеток крови при их взаимодействии с фуллеренами свидетельствуют о возможности применения фуллеренсодержащих материалов в биомедицине, в частности титанфуллереновых плёнок — для покрытий эндопротезов.

Нанотрубки

Впервые нанотрубки были открыты в лабораториях компании NEC японским исследователем Симио Иияма (Simio Iijama), который занимался изучением осадка, образующегося на катоде при распылении графита в электрической дуге. Его внимание привлекла необычная структура осадка, состоящего из микроскопических нитей и волокон. Измерения, выполненные с помощью электронного микроскопа, показали, что диаметр таких нитей не превышает нескольких нанометров, а длина составляет от одного до нескольких микрон. Сумев разрезать тонкую трубочку вдоль продольной оси, исследовательская группа Симио Иияма, вверенная ему руководством компании, обнаружила, что та состоит из одного или нескольких слоев, каждый из которых представляет собой гексагональную сетку графита, а ее основу формируют шестиугольники с расположенными в вершинах углов атомами углерода. Во всех случаях расстояние между слоями составляло 0,34 нм, то есть такое же, как и между слоями в кристаллическом графите. Также первые исследования новых углеродных соединений показали, что верхние концы трубочек закрыты многослойными полусферическими крышечками — их каждый слой составлен из шестиугольников и пятиугольников, напоминающих структуру половинки молекулы фуллерена.

Протяженные структуры, состоящие из свернутых гексагональных сеток с атомами углерода в узлах, впоследствии получили название нанотрубок. Открытие нанотрубок вызвало большой интерес у исследователей, занимающихся созданием материалов и структур с необычными физико-химическими свойствами. Возникший интерес у исследователей не утихает и сегодня, благо надежды, возложенные на новый материал, сбываются. Идеальная нанотрубка - это цилиндр, полученный при свертывании плоской гексагональной сетки графита без швов. Взаимная ориентация гексагональной сетки графита и продольной оси нанотрубки определяет очень важную структурную характеристику нанотрубки, которая получила название хиральности. Хиральность характеризуется двумя целыми числами (m, n), которые указывают местонахождение того шестиугольника сетки, который в результате свертывания должен совпасть с шестиугольником, находящимся в начале координат. Сказанное иллюстрирует рис. 4, где показана часть гексагональной графитовой сетки, свертывание которой в цилиндр приводит к образованию однослойных нанотрубок с различной хиральностью.

Хиральность нанотрубки может быть также однозначно определена углом a, образованным направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. Эти направления также показаны на рис. 4. Имеется очень много вариантов свертывания нанотрубок, но среди них выделяются те, в результате реализации которых не происходит искажения структуры гексагональной сетки. Этим направлениям отвечают углы a = 0 и a = 30°, что соответствует хиральности (m, 0) и (2n, n).

Среди однослойных нанотрубок особый интерес представляют нанотрубки с хиральностью (10, 10). Проведенные расчеты показали, что нанотрубки с подобной структурой должны обладать металлическим типом проводимости, а также иметь повышенную стабильность и устойчивость по сравнению с трубками других хиральностей. Справедливость этих утверждений была экспериментально подтверждена в 1996 году, когда впервые был осуществлен синтез нанотрубок с D = 1,36 нм, что соответствует хиральности (10, 10).

Многослойные нанотрубки углерода отличаются от однослойных более широким разнообразием форм и конфигураций. Возможные разновидности поперечной структуры многослойных нанотрубок показаны на рис. 5. Первая структура, представленная на рис 5, получила название русской матрешки. Она представляет собой коаксиально вложенные друг в друга однослойные цилиндрические нанотрубки. Для всех рассмотренных структур среднее расстояние между соседними слоями, как и в графите, равно 0,34 нм.

По мере увеличения числа слоев все в большей степени проявляются отклонения от идеальной цилиндрической формы. В некоторых случаях внешняя оболочка приобретает форму многогранника. Иногда поверхностный слой представляет собой структуру с неупорядоченным расположением атомов углерода. В других случаях на идеальной гексагональной сетке внешнего слоя нанотрубки образуются дефекты в виде пятиугольников и семиугольников, приводящие к нарушению цилиндрической формы. Наличие пятиугольника вызывает выпуклый, а семиугольника - вогнутый изгиб цилиндрической поверхности нанотрубки. Подобные дефекты ведут к появлению изогнутых и спиралевидных нанотрубок, которые в процессе роста извиваются, скручиваются между собой, образуя петли и другие сложные по форме протяженные структуры.

Наиболее широко распространен метод получения нанотрубок, использующий термическое распыление графитового электрода в плазме дугового разряда, горящей в атмосфере He. В дуговом разряде между анодом катодом при напряжении 20-25 В стабилизированном постоянном токе дуги 50-100А, межэлектродном расстоянии 0.5-2 мм и давлении Не 100-500 Торр, происходит интенсивное распыление материала анода. Часть продуктов распыления, содержащая графит, сажу, и фуллерены осаждается на охлаждаемых стенках камеры, часть, содержащая графит и многослойные углеродные нанотрубки (МСНТ), осаждается на поверхности катода. На выход нанотрубок влияет множество факторов. Наиболее важным является давление Не в реакционной камере, которое в оптимальных, с точки зрения производства нанотрубок, условиях составляет 500 Торр, а не 100-150 Торр, как в случае фуллеренов. Другим не менее важным фактором является ток дуги: максимальный выход нанотрубок наблюдается при минимально возможном токе дуги, необходимым для ее стабильного горения. Эффективное охлаждение стенок камеры и электродов также важно во избежание растрескивания анода и его равномерного испарения, что влияет на содержание нанотрубок в катодном депозите. Использование автоматического устройства поддержания межэлектродного расстояния на фиксированном уровне способствует увеличению стабильности параметров дугового разряда и обогащению нанотрубками материала катодного депозита.




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 705; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.062 сек.