Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модели элементов пневматических систем 2 страница




Например, в системах со строго выполняющимся расписанием, с ленточным конвейером и им подобным поток входящих заявок является регулярным и, следовательно, не является пуассоновским.

В пуассоновском стационарном (простейшем потоке) случайная величина Т, представляющая собой промежуток времени между любыми двумя соседними событиями, распределена по показательному закону

¦(t)=le-li, (1)

где l называется параметром этого закона распределения и представляет собой интенсивность простейшего потока (интенсивностью или средней плотностью потока называется среднее число событий в единицу времени).

Если вывод системы S из какого-то ее состояния si происходит под воздействием нескольких простейших потоков, то непрерывная случайная величина T, представляющая собой время пребывания системы (подряд) в данном состоянии si, также распределена по показательному закону, в котором l - суммарная интенсивность всех потоков, выводящих систему S из данного состояния si.

Классификация СМО

Модели СМО классифицируются по различным признакам.

По типу случайного процесса – марковский или немарковский.

По характеру источника заявок различают системы с конечным или бесконечным числом заявок. В случае конечного, обычно постоянного числа заявок, заявки после завершения обслуживания возвращаются в источник, где они пребывают в течение некоторого времени, затем вновь поступают в систему. Во втором случае источник генерирует бесконечное число заявок, и работа источника не зависит от работы обслуживающей системы. Системы с конечным числом заявок называются замкнутыми, с бесконечным – разомкнутыми.

По отсутствию или наличию возможности ожиданиясистемы с отказами (заявка, поступившая в момент, когда все обслуживающие приборы заняты, получает отказ, покидает систему и в дальнейшем процессе обслуживания не участвует) и системы с ожиданием (если все линии обслуживания заняты, заявка становится в очередь и ожидает, пока одна из линий не освободится).

Системы с ожиданием делятся на системы с неограниченным ожиданием (любая заявка рано или поздно будет обслужена) и системы с ограниченным ожиданием (накладываются ограничения на длину очереди, время пребывания в очереди, общее время пребывания в системе).

Для систем с отказами показателем качества системы обслуживания обычно считаются вероятность отказа, среднее число отказов за данный интервал времени и т.д. Для систем с ожиданием показателями качества обслуживания могут быть среднее время ожидания заявки, средняя длина очереди и т.д.

По числу линий обслуживания – одноканальные (одна линия) и многоканальные (несколько линий).

По правилу формирования очереди – с общей очередью (общий накопитель) и несколькими очередями (накопитель разделен на зоны).

Для общей очереди ограниченной длины возможны три основных алгоритма постановки заявок в очередь:

- "по кольцу" – последовательно в порядке поступления, при достижении ограничения запись продолжается с первой позиции,

- с поиском свободных мест – при отсутствии свободных мест заявка получает отказ,

- приоритетные правила – заявки неоднородны по значимости, при отсутствии свободного места в очереди, заявка поступает на место заявки с меньшим приоритетом.

По правилу обслуживания: бесприоритетное – "первым пришел – первым ушел", приоритетное - в соответствии с номером приоритета - "последним пришел – первым ушел", случайный отбор заявок.

По числу каналов СМО подразделяют на одноканальные (когда имеется один канал) и многоканальные.

По дисциплине обслуживания СМО подразделяют на три класса:

СМО с отказами (нулевым ожиданием или явными потерями), в которых заявка, поступившая на вход СМО в момент, когда все каналы заняты, получает "отказ" и покидает СМО ("пропадает"). Чтобы эта заявка все же была обслужена, она должна снова поступить на вход СМО и рассматриваться при этом как заявка, поступившая впервые. Примером СМО с отказами может служить работа АТС: если набранный телефонный номер (заявка, поступившая на вход) занят, то заявка получает отказ, и, чтобы дозвониться по этому номеру, следует его набрать еще раз (заявка поступает на вход как новая),

СМО с ожиданием (неограниченным ожиданием или очередью). В таких системах заявка, поступившая в момент занятости всех каналов, становится в очередь и ожидает освобождения канала, который примет ее к обслуживанию. Каждая заявка, поступившая на вход, в конце концов будет обслужена. Такие СМО часто встречаются в торговле, в сфере бытового и медицинского обслуживания, на предприятиях (например, обслуживание станков бригадой работников).

СМО смешанного типа (ограниченным ожиданием). Это такие системы, в которых на пребывание заявки в очереди накладываются некоторые ограничения.

Эти ограничения могут накладываться на длину очереди, т.е. максимально возможное число заявок, которые одновременно могут находиться в очереди.

В качестве примера такой системы можно привести мастерскую по ремонту автомобилей, имеющую ограниченную по размерам стоянку для неисправных машин, ожидающих ремонта.

Ограничения ожидания могут касаться времени пребывания заявки в очереди, по истечению которого она выходит из очереди и покидает систему, либо касаться общего времени пребывания заявки в СМО (т.е. суммарного времени пребывания заявки в очереди и под обслуживанием).

В СМО с ожиданием и в СМО смешанного типа применяются различные схемы обслуживания заявок из очереди. Обслуживание может быть упорядоченным, когда заявки из очереди обслуживаются в порядке их поступления в систему, и неупорядоченным, при котором заявки из очереди обслуживаются в случайном порядке. Иногда применяется обслуживание с приоритетом, когда некоторые заявки из очереди считаются приоритетными и поэтому обслуживаются в первую очередь.

По ограничению потока заявок СМО делятся на замкнутые и открытые (разомкнутые).

Если поток заявок ограничен и заявки, покинувшие систему, могут в нее возвращаться, то СМО является замкнутой, в противном случае — открытой. Классическим примером замкнутой СМО служит работа группы наладчиков в цеху. Станки являются источниками заявок на обслуживание, и их количество ограничено, наладчики — каналы обслуживания. После проведения ремонтных работ вышедший из строя станок снова становится источником заявок на обслуживание.

По количеству этапов обслуживания СМО делятся на однофазные и многофазные системы. Если каналы СМО однородны, т.е. выполняют одну и ту же операцию обслуживания, то такие СМО называются однофазными. Если каналы обслуживания расположены последовательно и они неоднородны, так как выполняют различные операции обслуживания, то СМО называется многофазной (заявка обслуживается несколькими устройствами). Примером работы многофазной СМО может служить

Примеры: обслуживание покупателя в магазине однофазное и многофазное. Обслуживание автомобилей на станции техобслуживания (мойка, диагностирование и т.д.). Технологический процесс обработки детали (определенная очередность операций).

Оценка эффективности СМО

Каждая СМО в зависимости от своих параметров: характера потока заявок, числа каналов обслуживания и их производительности, а также от правил организации работы обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

Необходимо оценить эффективность обслуживания потока заявок системой заданной структуры (количество линий обслуживания, производительность каждой линии).

Цель - выработка рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок для обеспечения высокой эффективности функционирования СМО.

Для достижения этой цели устанавливаются зависимости эффективности функционирования СМО от ее организации (параметров): характера потока заявок, числа каналов и их производительности и правил работы СМО.

В качестве критерия эффективности системы обслуживания могут быть использованы различные величины и функции, например, вероятность обслуживания каждой из поступающих заявок, средняя доля обслуженных заявок, среднее время ожидания обслуживания, среднее время простоя каждого из каналов и системы в целом, пропускная способность системы и т.д. Численное значение каждого из этих требований в той или иной степени характеризует эффективность системы по удовлетворению потока поступающих требований – пропускную способность системы. Пропускная способность зависит не только от параметров системы, но и от характера потока заявок.

В качестве характеристик эффективности функционирования СМО можно выбрать три основные группы (обычно средних) показателей:

Показатели эффективности использования СМО:

- пропускная способность СМО - отношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу поступивших заявок за это же время;

- средняя продолжительность периода занятости СМО;

- коэффициент использования СМО - средняя доля времени, в течение которого СМО занята обслуживанием заявок, и т.п.

Показатели качества обслуживания заявок:

- среднее время ожидания заявки в очереди;

- среднее время пребывания заявки в СМО;

- вероятность отказа заявке в обслуживании безожидания;

- вероятность того, что поступившая заявка немедленно будет принята к обслуживанию;

- среднее число заявок, находящихся в очереди;

- среднее число заявок, находящихся в СМО, и т.п.

Аналитические и статистические модели

Известны аналитические соотношения теории массового обслуживания, связывающие характеристики потока заявок и параметры системы с показателями качества обслуживания для простейшего (пуассоновского) потока, к которому могут быть сведены многие практические задачи.

Разработанные аналитические методы обычно относятся к моментам времени, достаточно удаленным от начала процесса – когда уже наступил стационарный режим.

Обобщение математической модели массового обслуживания идет по следующим направлениям.

Рассматривался однородный поток заявок, но на практике более распространены задачи, требующие учета имеющейся неоднородности заявок в потоке. Особенно это существенно тогда, когда параметры процесса обслуживания (например, его длительность, качество и др.) зависят не только от времени поступления заявки, но и от ее характеристик.

Примеры. При обработке детали на станке время обработки зависит от ее сложности, размеров, характеристик материала и т.п. При обработке потока самолетов в аэропорт помимо времени прибытия учитывается тип самолета, скорость, высота, курс, длина пробега и т.п.

В случае неоднородных заявок (для их описания необходимо привлекать другие параметры, кроме момента поступления в систему) применяется обобщенное понятие потока: каждая j-ая заявка характеризуется моментом поступления t j и n параметрами а 1, а 2,..., а n.

Другими словами, каждая заявка представляет собой (n + 1)-мерный вектор вида v j = v (tj, α1j, α2j,..., αnj) в пространстве параметров t, α1, α2,..., αn.

Часто приходится учитывать случайные отклонения от нормы не только моментов поступления, но и случайный характер параметров заявок (размеров, температуры, скорости, твердости, координат и др.). Поэтому в общем случае заявки описываются случайными векторами, и мы приходим к необходимости рассматривать случайные потоки векторов.

В рассмотренных системах параметры системы обслуживания предполагались независимыми от потока заявок.

При неоднородном потоке заявок параметры системы обслуживания (число каналов, характеристики закона распределения времен занятости канала, например, среднее время обслуживания) реально могут зависеть от характеристик потока заявок. Если считать поток заявок потоком случайных векторов, то параметры системы обслуживания могут быть функциями tj и величин α1j, α2j,..., αnj Например, длительность обработки детали может определяться ее размерами, твердостью материала, температурой и др.

Аналитические математические модели могут быть построены для каждого типа системы с простейшим потоком заявок (с ожиданием, без ожидания и др.).

Аналитические методы анализа систем массового обслуживания пригодны для получения качественных характеристик и практически могут использоваться для сравнительно простых случаев.

Реальные входные потоки по своим свойствам далеко не всегда соответствуют простейшему потоку, время обслуживания часто распределяется не по показательному закону, дисциплина обслуживания может быть достаточно сложной.

На практике приходится сталкиваться с многофазными системами. Системы массового обслуживания, составляющие различные фазы обслуживания, могут быть неодинаковыми, и характер операций, обслуживания на различных фазах, может быть различным. На последующих фазах могут появиться заявки, которые не поступали на предыдущие фазы, может оказаться, что обслуживание, относящееся к последующей фазе, начинается еще до окончания обслуживания еще на предыдущей фазе и т.д.

Порядок использования свободных линий (каналов) и порядок выбора заявок из очереди может не устанавливаться заранее, и в процессе обслуживания заявок изменяться и не зависеть от характеристик потока заявок.

В реальных процессах, которые могут быть представлены как системы массового обслуживания (например, в процессах с управлением), может содержаться элемент, способный определять оптимальный порядок обслуживания.

Для математического описания процессов с управлением удобно использовать такие системы массового обслуживания, которые снабжены специальным алгоритмом, позволяющим по известным данным о заявках и состояниях обслуживающих средств определить порядок обслуживания, и, возможно, целесообразное изменение структуры самой системы. Пример такой системы массового обслуживания – моделирование дискретных производственных процессов.

Для анализа стохастических систем, когда аналитическое описание процесса получить затруднительно, используется метод статистического моделирования (имитационного моделирования).

Вместо того, чтобы описывать случайное явление аналитически, производится его моделирование с помощью некоторой процедуры, дающей случайный результат. С помощью специальных моделирующих алгоритмов формируются реализации потока заявок с заданным законом распределения интервалов между заявками. Здесь самое главное – определить вид закона распределения.

8.2 Модели производственных процессов

Производственный комплекс для поточного выпуска штучных изделий (автомобилей, самолетов, труб, часов и т.д.) формализуется как дискретный производственный процесс. К производственным комплексам дискретного типа можно отнести крупные морские, и авиационные порты, железнодорожные станции с оборудованием погрузки-разгрузки, технического обслуживания и др.

Производственный комплекс состоит из большого количества станков, обеспечивающих выполнение технологических операций (обработка деталей, сборка узлов, агрегатов, изделий). Технологические операции объединяются в технологические линии. Работа станков, операций, линий характеризуется частичной или полной синхронизацией и взаимозависимостью режимов выполнения операций. Средства управления производственным процессом (датчики, линии передачи данных, вычислительные устройства) собирают, обрабатывают информацию и вырабатывают управляющие команды.

Под процессом понимается последовательность действий (операций), направленных на получение определенных свойств системы или на достижение определенного ее состояния. Выделим производственные процессы – всю совокупность основных технологических процессов (изготовление, сборка, испытание) и сопутствующих процессов (планирование, организация, транспортировка, хранение), осуществляемых с целью превращения материалов и полуфабрикатов в готовые изделия.

Производственный процесс является примером сложной системы со всеми присущими ей свойствами. При проектировании на системном уровне таких сложных систем как транспортные системы, вычислительные системы и сети, производственные и технологические процессы, производственные предприятия, автоматизированные системы проектирования и управления требуется выбор оптимального (рационального) процесса их функционирования.

Технологические процессы как часть производственного процесса содержат действия по изменению и последующему определению состояния предмета производства. Технологические процессы строятся по отдельным способам выполнения процесса (технологические процессы механической обработки, термической обработки, обработки давлением, сварки, пайки, литья и т.д.) и по объектам производства (технологический процесс изготовления отдельных подсистем - кузова, двигателя, сборки объекта в целом).

Производственная (технологическая) операция – законченная часть технологического процесса, выполняемая на данном рабочем месте. Результатом любой технологической операции является превращение одного объекта (или совокупности объектов) с определенными свойствами в другой объект с иными свойствами. Технологическая операция является основной единицей планирования производства, учета производительности, управления и контроля технологического процесса.

Проектирование технологического процесса предполагает определение такой последовательности технологических операций (управление), которая позволит получить конечный продукт с наибольшей эффективностью (например, при минимальных экономических затратах).

Поскольку технологические операции реализуются на основании фундаментальных законов механики, физики, химии и др., то может быть создана математическая модель процесса. Переход системы из одного состояния в другое может представлять собой, например, химическое превращение одной совокупности веществ в другую, управляющими переменными могут быть температура, давление, продолжительность реакции и т.д.

В общем виде математическая модель любой технологической операции характеризуется начальным и конечным состояниями, управлениями, оператором перехода из начального состояния в конечное. В оператор перехода могут быть также включены экономические показатели.

Большинство технологических операций можно выполнить с использованием разных методов обработки и оборудования. Выбор рационального варианта осуществляется на основе технико-экономического анализа возможных в данных производственных условиях вариантов.

При проектировании производственных процессов в системе исследуются такие параметры, как производительность (пропускная способность) проектируемой системы, продолжительность обслуживания в системе, эффективность используемого оборудования. Входные величины при исследованиях чаще всего являются случайными, и анализ их функционирования на системном уровне носит статистический характер. Основой анализа и оптимизации различных производственных процессов является имитационное моделирование. В первом приближении – при исследовании на качественном уровне - исследуемые системы могут формализоваться как системы массового обслуживания.

Дискретный производственный процесс

При моделировании дискретного производственного процесса он расчленяется на отдельные акты – производственные операции.

Большинство дискретных производственных процессов могут быть описаны как системы массового обслуживания и исследованы методами имитационного моделирования по принципу особых состояний («по ∆ z»).

Для систем массового обслуживания особые состояния появляются в моменты поступления новых заявок или в моменты окончания обслуживания и освобождения каналов (количество свободных каналов или заявок в очереди меняется скачком).

Свойства таких систем оцениваются по информации об особых состояниях, неособые состояния для оценки свойств систем интереса не представляют.

В соответствии с принципом особых состояний определяется момент Тi наступления очередного события i -ого процесса, и, если таких событий будет r, то выбирается наиболее ранний момент наступления особого состояния в соответствии с операцией

Т n = min Ti,

где n – номер процесса, в котором наступило ближайшее событие.

Моменты Ti, в отличие от реального времени, называются моментами системного времени.

Различают две стороны моделирования – процесс производственной операции (обработки, сборки) как процесс переработки информации о полуфабрикатах и процесс функционирования сборочного оборудования (учитывает синхронизацию операций и влияние возмущающих факторов).

В основе моделирования лежит учет различных возмущающих факторов: нарушение режима синхронизации (очереди полуфабрикатов, простои станков и т.д.), выход из строя элементов оборудования и их ремонт, периодическая наладка оборудования.

Моделирование нарушения синхронизации может быть учтено при имитации очереди заявок и порядка выбора свободных каналов для обслуживания пришедшей заявки.

Моделирование выхода из строя оборудования и его ремонта (система массового обслуживания с ненадежными элементами): реализация жребия с вероятностью сбоя оборудования, формирование возможных значений самих моментов сбоя и сравнение их с узловыми моментами производственного процесса (начало процесса, ожидание, конец процесса и др.) -результаты сравнения интерпретируются как всевозможные следствия выхода из строя оборудования.

При моделировании периодической наладки моменты остановки производственного процесса для наладки могут быть заранее известны (постоянство интервала наладки), либо определяться в процессе производства как функции суммарного времени работы оборудования, или в зависимости от поведения характеристик обработанных полуфабрикатов: увеличения процента брака, увеличения разброса параметров изделий или длительности операции τоп. Моделирование комплексного процесса обработки, сборки и управления при поточном производстве

Пусть процесс поточного производства штучных изделий складывается из операций обработки, сборки и управления.

Линия сборки (совокупность устройств, обеспечивающих сборку изделия) состоит из l устройств. Каждое устройство выполняет только одну сборочную операцию.

На сборку поступают ведущий полуфабрикат (основа сборного узла) и присоединяемые к узлу ведомые полуфабрикаты (детали) с номерами 1, 2,.... 1.

Будем предполагать, что режим перемещения сборного узла от места выполнения одной операции к месту выполнения последующей операции является жестким (конвейер). Тогда tijн – момент начала i -й сборочной операции над j -м узлом. Очевидно, что момент tij доставки j -го узла к месту выполнения i -й сборочной операции удовлетворяет условию tij ≤ tijн.

t1j - момент подачи j -го узла к месту выполнения первой сборочной операции одновременно является моментом подачи (j -1)-го узла к месту выполнения второй операции, а (j - 2)-го узла - к месту выполнения третьей операции и т. д. Поэтому

tij = ti+1, j-1 = ti+2, j-2 = ti+к, j, если i < l, jk > 0.

В момент времени tijн начинается проверка качества очередной детали i -гo типа, которая длится τijпр. С вероятностью рбр* деталь может оказаться бракованной. В этом случае она исключается из процесса и выбирается новая деталь. Продолжительность сборки τijсб. Если к моменту tij* данная сборочная операция не закончена, то происходит срыв операции сборки.

Каждой из l сборочных операций соответствует линия, обеспечивающая обработку деталей (изготовление детали, ее наладку, доставку со склада и т. д.). Для простоты будем считать, что на каждой линии выполняется только одна операция обработки. Формализованная схема операции обработки рассмотрена ранее.

Процесс функционирования соответствующего станка (преобразование параметров полуфабриката) сопровождается основными возмущающими факторами: занятостью станка и возникновением очереди полуфабрикатов, возможными отказами ненадежных элементов оборудования, возможностью появления брака, постепенным износом оборудования и т. д.

Формализованная схема комплексной операции.

Полуфабрикат с номером k (заготовка i -го типа) поступает к линии обработки в момент времени tiкп. Если соответствующий станок свободен, то начинается обработка полуфабриката. Если станок занят, то полуфабрикат ждет момента освобождения станка.

Поскольку время ожидания предполагается неограниченным, возникает очередь полуфабрикатов, но не более чем из т = т* штук в очереди, иначе подача полуфабрикатов временно прекращается. Возобновление подачи полуфабрикатов производится по признаку т < т**. Операция обработки длится τiкобр, причем, τiкобр – случайная величина с заданным законом распределения.

Допускаются сбои (отказы) оборудования двух типов (кратковременный с заменой отказавшей детали и длительный, при котором наряду с устранением неисправности в каком-то конкретном блоке, попутно производится наладка многих других блоков и элементов).

Продолжительности ремонта равны τ1р и τ2р соответственно, время доработки полуфабриката равно τд а время наладки станка есть τн. В результате обработки может быть получен брак с вероятностью pбр. В этом случае требуется подналадка станка длительностью τ3р.

Прекращение моделирования производственного процесса производится в случаях, когда очередной ведущий полуфабрикат поступает на сборку позднее момента времени Т или когда момент начала операции обработки tiкнТ.

Комбинация операций обработки со сборкой изделия (а также с простейшими операциями управления) и дает тот абстрактный процесс поточного производства штучных изделий.

Особенности, характерные для конкретных процессов.

В производственном комплексе каждая линия обработки может состоять не из одного станка - количество станков в каждой линии обработки может быть произвольным. Это обстоятельство приводит к необходимости установления в моделирующем алгоритме счетчика количества операций и логического оператора, проверяющего условие, что количество станков в одной линии обработки не больше заданного.

На том же принципе может быть построен моделирующий алгоритм для многоступенчатой сборки, когда изделие собирается из отдельных узлов, а каждый узел собирается из более мелких узлов и блоков и т.д., наконец, имеются узлы и блоки, которые собираются из отдельных деталей.

На первой ступени из отдельных деталей собираются узлы, а на второй ступени из узлов собираются изделия. Затем получаемые узлы представляются как отдельные детали, и полученный алгоритм приспосабливается для моделирования сборки изделия из отдельных узлов. Объединение таких алгоритмов и будет представлять собой моделирующий алгоритм для двухступенчатой сборки.

Аналогичным образом могут быть учтены и такие особенности производственного комплекса, как наличие параллельно работающих линий сборки или обработки – используются рассмотренные ранее моделирующие алгоритмы для каждой из параллельных линий, а для построения сводного алгоритма целесообразно воспользоваться приемами моделирования многоканальных или обобщенных систем массового обслуживания.

Типичные прикладные задачи, которые решаются методом имитационного моделирования: определение оптимальных заделов деталей и полуфабрикатов, оценка оптимальных объемов карманов и местных складов, определение узких мест, ограничивающих производительность оборудования, и другие.

Основные блоки моделирующего алгоритма:

- моделирование собственно операции с учетом различных типов сбоев станка и соответствующего времени наладки и ремонта (с учетом случайных значений величин);

- обеспечение связи и синхронизации операции с другими актами производственного процесса (подача полуфабрикатов, регулирование операции и т.д.), а также управление самим процессом моделирования (фиксация и обработка результатов, переход к очередному полуфабрикату и т.д.). Эта часть алгоритма моделирует некоторую систему массового обслуживания.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 492; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.071 сек.