Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Способы передачи наследственной информации у бактерий




В 1928 г. Ф. Гриффите получил интересные данные по заражению мышей возбудителем пневмонии. Он исполь­зовал два штамма пневмококка: вирулентный штамм S (клетки его имеют полисахаридную капсулу и дают глад­кие колонии) и невирулентный штамм R (клетки не об­ладают капсулой и образуют шероховатые колонии). За­ражение мышей вирулентным штаммом вызывало их гибель. При инъекции невирулентного штамма мыши не болели. Пневмония у них не развивалась и после введе­ния вирулентного штамма, убитого нагреванием. Однако, если мышам вводился одновременно убитый штамм S и живой штамм R, через некоторое время они погибали от пневмонии, а при посеве крови были выделены живые пневмококки с капсулой. Таким образом, мож­но было предполагать, что свойства убитого вирулентно­го штамма как бы перешли к живому невирулентному. Это явление было названо трансформацией.

Природу этого явления в 1944 г. установил О. Эвери. Он провел аналогичный эксперимент с пневмококками in vitro. Спонтанно штамм S мог мутировать, т. е. при­обретать свойства штамма R, но обратная мутация (R →S), как правило, не происходит. Однако добавле­ние к R экстракта убитых пневмококков S увеличивает вероятность обратной мутации. Эвери выделил вещество из убитых бактерий вирулентного штамма S, очистил, изучил химические свойства и назвал его трансформи­рующим фактором. Трансформирующий фактор инактивировался лишь одним ферментом — дезоксирибонуклеазой, расщепляющим только ДНК. Это означало, что трансформирующим веществом является ДНК. Так было получено первое подлинное доказательство генетической роли нуклеиновых кислот. Однако это открытие не сразу привлекло всеобщее внимание, поскольку в то время было мало известно о химической природе генов, структуре белков и ДНК. Тем не менее открытие Эвери сти­мулировало более детальное изучение нуклеиновых кис­лот. В 1947 г. Э. Чаргафф установил, что количество нуклеотидов ДНК и их соотношение у разных организ­мов неодинаково. Это навело на мысль, что порядок расположения нуклеотидов в молекуле ДНК, очевидно, как-то связан с ее генетической специфичностью.

Трансформация сводится к включению вещества хро­мосомы одной бактерии (донора) в хромосому другой (реципиента) и служит одним из способов обмена гене­тической информацией у бактерий. Однако механизм ее еще недостаточно изучен.

Долгое время считалось, что генетическая трансфор­мация свойственна только одноклеточным. В настоящее время установлено, что явления, напоминающие генети­ческую трансформацию, могут происходить и в клетках эукариотов. При взаимодействии некоторых вирусов с клетками животных возможна трансформация эукариотной клетки. Полученная ею новая генетическая инфор­мация устойчиво передается при последующих клеточ­ных делениях. Получены неоспоримые доказательства существо­вания генетической трансформации в клетках млекопи­тающих. Дж. Берг и В. Мак-Брайд при культивировании клеток мыши в среде с изолированными хромосомами клеток человека выделили потомство клеток с маркера­ми последнего. (Имеются основания считать, что в геном реципиента включается лишь небольшой участок хромо­сомы донора, около 2 %.) Пока мало известно о харак­тере связи между геномом реципиента и фрагментом хромосомы донора, но, несомненно, связь эта довольно прочная — клетки мыши не теряли приобретенные свой­ства даже при выращивании в неселективных условиях.

В 1952 г. Н. Циндер и Дж. Ледерберг описали еще один способ передачи наследственной информации у бак­терий. Исследования проводились на бактериях мыши­ного тифа Salmonella fyphimurium. В U-образную трубку с бактериальным фильтром посередине засевались на полную питательную среду 2 штамма: в одну часть пробирки штамм 22А (ауксотрофный по мутации, тормозящей синтез триптофана Т-; это требовало добав­ления данной аминокислоты в среду для культивирова­ния), в другую — штамм дикого типа (способен син­тезировать триптофан Т+). Совместное выращивание двух штаммов бактерий мышиного тифа привело к тому, что через некоторое время при посеве на минимальную среду бактерии штамма 22А дали небольшое количество колоний. Следовательно, они каким-то образом приобре­ли способность синтезировать триптофан. Переход бак­терий из одного колена пробирки в другое преграждался бактериальным фильтром, а возможность обратной му­тации штамма 22А исключалась, так как он был стабиль­ным в этом отношении. По мнению Циндера и Ледерберга, перенос информации осуществлялся фагом. Было установлено, что ДНК-содержащие вирусы (фаги) де­лятся на две группы: паразиты, приводящие к гибели бактериальные клетки, и умеренные (симбиотические), не вызывающие заболевания и разрушения клеток.Уме­ренные вирусы, или профаги, существуют в клетке в виде ДНК, интегрированной с ДНК бактерии, и реплицируют­ся вместе с ее хромосомой. Явление такого со­существования умеренного фага и бактерии носит назва­ние лизогении. Лизогенная клетка (иначе клетка с профагом) обычно ничем не отличается от других бактерий. Обнаружить профаг удается лишь при активизации его ионизирующим и ультрафиолетовым излучением или при воздействии каких-либо иных факторов, вследствие чего он превращается в зрелый фаг, убивает клетку и исполь­зует ДНК бактерии на построение своей ДНК. Таким образом, профаг при заражении новой клетки может со­общить ей часть наследственной информации от старой. Штамм оказался лизогенным по фагу, который из умеренного в силу каких-то причин превратился в пара­зитический и при заражении новых бактерий перенес в них часть фрагмента ДНК с геном, контролирующим синтез триптофана. Бактериальный фильтр не послужил преградой для вирусов, так как размеры их очень малы и они могут фильтроваться.

Явление переноса наследственной информации бак­териофагом от одних бактерий к другим называется трансдукцией. Механизм трансдукции еще недостаточно изучен. Предполагается, что фрагмент чужеродной ДНК вначале самостоятельно реплицируется, а затем путем рекомбинации включается в хромосому клетки-реципи­ента. Трансдукция в настоящее время детально изучает­ся в связи с вопросами генной инженерии, поскольку мо­жет рассматриваться в качестве одного из путей пере­носа наследственной информации от клетки к клетке.

В 1946 г. Дж. Ледерберг и Е. Татум при совместном выращивании двух ауксотрофных комплементарных мутантов кишечной палочки Е. coli (В-М-Р+Т+ и В+М+Р-Т-) в течение ночи получили культуру В+М+Р+Т+, которая оказалась способной в отличие от исходных штаммов расти на минимальной питательной среде без добавления метионина, биотина, треонина и пролина. Трансформации и трансдукции здесь явно не было. При наличии бактериального фильтра в сосудах, где выращивались культуры, взаимного обмена инфор­мацией не наблюдалось. Очевидно, существует очень тесный контакт между бактериями. На основании этого впервые было высказано предположение о возможности у бактерий полового процесса. Половой процесс у бакте­рий, при котором осуществляется перенос генетической информации при тесном контакте клеток, был назван конъюгацией. Впоследствии удалось получить микрофо­тографии конъюгирующих бактерий кишечной палочки. Передача информации при конъюгации носит односторонний характер.В 1952 г. Б. Хейс показал, что при конъюгации одна из клеток (мужская F+) служит донором, другая (женская F-) — реципиентом. Донорные клетки несут особый фактор F (фрагмент молекулы ДНК; автономно существует в цитоплазме и содержит около 10 пар нуклеотидов), являющийся нехромосомной структурой. Реципиенты этого фактора не имеют.

Процесс конъюгации и механизм переноса генетиче­ского материала был описан у бактерий Е. coli в 1955 г. В. Вольманом и Ф. Жакобом. Они показали, что при конъюгации фактор F может переходить из мужской клетки в женскую и превращать ее в F+. При этом дру­гие свойства бактериальной клетки не изменяются. Пе­редача полового фактора происходит как бы независимо от других генетических маркеров. Клетки штаммов F- внутри себя не рекомбинируют.

При обратной мутации половой фактор у бактерий может вновь приобрести автономное состояние. Осво­божденный из хромосомы, подобно профагу, он иногда захватывает фрагмент бактериальной хромосомы, при­легающий к нему, и при конъюгации вместе с ним пере­ходит в женскую клетку, сообщая ей свойства донорной клетки и некоторые другие свойства, контролируемые фрагментом хромосомы. Такой процесс переноса наслед­ственной информации из одной бактериальной клетки в другую посредством полового фактора называется сексдукцией.

Таким образом, половой фактор является саморедуплицирующим генетическим элементом, способным су­ществовать в двух состояниях: автономном и интегриро­ванном в хромосому. Такие участки генетического мате­риала получили название эписом.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1430; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.