Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Связь передаточных функций с моментами кривых




 

При использовании импульсного входного возмущения имеет место следующая связь:

(3.6.9)

так как свх(р)= 1 для импульсного входа

Найдем значения производных разных порядков передаточной функции по оператору Лапласа:

(3.6.10)

Найдем теперь пределы правой и левой частей уравнения для производных при р ®0. Заметим, что стремление к нулю оператора Лапласа соответствует стремлению к бесконечности реального времени t ®¥.

(3.6.11)

Интеграл в правой части уравнения соответствует выражению начального момента порядка s для функции распределения.

Поэтому, окончательно получаем выражение для момента кривой распределения в следующем виде:

, (3.6.12)

где s -порядок производной и начального момента.

Используя это уравнение можно найти связь между параметрами модели структуры потока и характеристиками экспериментально наблюдаемой кривой распределения – ее моментами, которые легко вычисляются с использованием методов численного расчета определенных интегралов.

Например, для модели идеального смешения, получим следующие выражения для производных передаточной функции:

Передаточная функция имеет вид:

(3.6.13)

Первая производная

(3.6.14)

Вторая производная

(3.6.15)

Найдем моменты различного порядка как пределы производных при р ®0:

(3.6.16)

(3.6.17)

(3.6.18)

Найдем центральные моменты кривой отклика аппарата идеального перемешивания:

; (3.6.19)

; (3.6.20)

(3.6.21)

Из полученных выражений видно, что первый начальный момент равен среднему времени пребывания в аппарате, а второй центральный момент равен дисперсии, причем .

Для аппарата идеального вытеснения, с учетом значения передаточной функции, получаем следующие выражения:

;

(3.6.22)

Отсюда получаем следующие уравнения связи моментов с параметрами модели:

(3.6.22)

Полученное выражение для m2, показывает, что дисперсия s2, т.е. рассеяние времени пребывания отдельных частиц в аппарате идеального вытеснения относительно среднего времени пребывания равно нулю. Таким образом, все частицы находятся в аппарате одно и то же время.

3.6.3.Ячеечная модель

Передаточная функция ячеечной модели имеет следующий вид:

(3.6.23)

После дифференцирования и нахождения пределов производных, можно найти следующие соотношения между моментами кривой распределения и параметрами модели:

(3.6.24)

Из выражения для дисперсии видно, что при n ®¥ дисперсия s2®0. Это свидетельствует о том, что ячеечная модель при этом стремится к модели идеального вытеснения. Третий центральный момент является величиной положительной, следовательно функция распределения будет иметь правостороннюю асимметрию

(затянутый переходный процесс). На основании полученных формул для М1 и М2 обычно рассчитывают параметры модели ( и n) а третий момент используют для проверки адекватности модели.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 422; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.