Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 3 влияние освещения на условия деятельности человека 3 страница




Высокочастотные электромагнитные поля весьма опасны, так как вызывают локальный перегрев внутренних органов. Например, СВЧ- излучение с длиной волны порядка 3-10см вредно действует на глаза.

Уменьшение интенсивности ЭМП на рабочих местах достигается несколькими способами. Прежде всего, при проектировании цеха предусматривается увеличение расстояния между источником излучения и работающими, устанавливают отражающие и поглощающие экраны между источником и рабочим местом. Применяют сплошные и сетчатые экраны из стали, меди и алюминия. Используются также электропроводные тонкие материалы толщиной 0,01-0,05мм, а также токопроводящие краски, металлизированные поверхности.

В качестве индивидуальных средств защиты применяют экранирующие костюмы, изготовленные из металлизированной защитной ткани. Радиозащитные очки типа ОРЗ-5 ослабляют действие электромагнитного поля в диапазоне длины волн от 1,8 до 150см. Оправа таких очков изготовлена из губчатого материала и покрыта защитным слоем. Стекла очков покрыты пленкой диоксида олова (SnO2).

 

6.2. Ионизирующие излучения.

Ионизирующими называют излучения, взаимодействие которых со средой приводит к образованию электрических зарядов различных знаков. Источники этих излучений широко используются в технике, химии, медицине, сельском хозяйстве и других областях, например, при измерении плотности почв, обнаружении течей в газопроводах, измерении толщины листов, труб и стержней, антистатической обработке тканей, полимеризации пластмасс, радиационной терапии злокачественных опухолей и др. Однако следует помнить, что источники ионизирующих излучений представляют существенную угрозу здоровью и жизни использующих их людей.

 

Существуют два вида ионизирующих излучений:

- корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (альфа- и бета- излучение и нейтронное излучение);

- электромагнитное (гамма (у)-излучение и рентгеновское) сочень малой длиной волны.

Рассмотрим основные характеристики указанных излучений.

Альфа (α)-излучение представляет собой поток ядер гелия, обладающих большой скоростью.

Под длиной пробега частицы в воздухе или других средах принято называть наибольшее расстояние от источника излучения, при котором ещё можно обнаружить частицу до ее поглощения веществом. Длина пробега частицы зависит от заряда, массы, начальной энергии и среды, в которой происходит движение. С возрастанием начальной энергии частицы и уменьшением плотности среды длина пробега увеличивается. Если начальная энергия излучаемых частиц одинакова, то тяжелые частицы обладают меньшими скоростями, чем легкие. Если частицы движутся медленно, то их взаимодействие с атомами вещества среды более эффективно и частицы быстрее растрачивают имеющийся у них запас энергии.

Длина пробега альфа-частиц в воздухе обычно менее 10 см. Так, например, альфа-частицы с энергией 4 МэВ обладают длиной пробега в воздухе примерно в 2,5 см. В воде или в мягких тканях человеческого тела, плотность которых более чем в 700 раз превышает плотность воздуха, длина пробега альфа частиц составляет несколько десятков микрометров. За счет своей большой массы при взаимодействии с веществом альфа-частицы быстро теряют свою энергию. Это объясняет их низкую проникающую способность и высокую удельную ионизацию: придвижении в воздушной среде альфа-частица на 1 см своего пути образует несколько десятков тысяч пар заряженных частиц - ионов.

Бета-излучение представляет собой поток электронов (β-излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), возникших при радиоактивном распаде. В настоящее время известно около 900 бета-радиоактивных изотопов

Масса бета-частиц в несколько десятков тысяч раз меньше массы альфа-частиц. В зависимости от природы источника бета- излучений, скорость этих частиц может лежать в пределах 0,3— 0,99 скорости света. Энергия бета-частиц не превышает нескольких МэВ, длина пробега в воздухе составляет приблизительно 1800 см, а в мягких тканях человеческого тела ~ 2,5 см. Проникающая способность бета-частиц выше, чем альфа-частиц (из-за меньших массы и заряда). Например, для полного поглощения потока бета-частиц, обладающих максимальной энергией 2 МэВ, требуется защитный слой алюминия толщиной 3,5 мм. Ионизирующая способность бета-излучения ниже, чем альфа-излучения: на 1 см пробега бета-частиц в среде образуется несколько десятков пар заряженных ионов.

Нейтронное излучение представляет собой поток ядерных частиц, не имеющих электрического заряда. Масса нейтрона приблизительно в 4 раза меньше массы альфа-частиц. В зависимости от энергии различают медленные нейтроны (с энергией менее 1 КэВ), нейтроны промежуточных энергий (от 1 до 500 КэВ) и быстрые нейтроны (oт 500 КэВ до 20 МэВ). Среди медленных нейтронов различают тепловые нейтроны с энергией менее 0,2 эВ. Тепловые нейтроны находятся по существу в состоянии термодинамического равновесия с тепловым движением атомов среды. Наиболее вероятная скорость движения таких нейтронов при комнатной температуре составляет 2200 м/с. При неупругом взаимодействии нейтронов с ядрами атомов среды возникает вторичное излучение, состоящее из заряженных частиц и гамма -квантов (гамма-излучение) При упругих взаимодействиях нейтронов с ядрами может наблюдаться обычная ионизация вещества. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у альфа - или бета-частиц. Так, длина пробега нейтронов промежуточных энергий составляет около 15 м в воздушной среде и 3 см в биологической ткани, аналогичные показатели для быстрых нейтронов - соответственно 120м и 10см. Таким образом, нейтронное излучение обладает высокой проникающей способностью и представляет для человека наибольшую опасность из всех видов корпускулярного излучения. Мощность нейтронного потока измеряется плотностью потока нейтронов (нейтр /см2 с).

Гамма-излучение (у-излучение) представляет собой электромагнитное излучение с высокой энергией и с малой длиной волны. Оно испускается при ядерных превращениях или взаимодействии частиц. Высокая энергия (0,01— 3MэB) и малая длина волны обусловливает большую проникающую способность гамма-излучения. Гамма лучи не отклоняются в электрических и магнитных полях. Это излучение обладает меньшей ионизирующей способностью, чем альфа - и бета-излучение

Рентгеновское излучение может быть получено в специальных рентгеновских трубах, в ускорителях электронов, в среде, окружающей источник бета - излучения, и др. Рентгеновские лучи представляют собой один из видов электромагнитного излучения. Энергия его обычно не превышает 1 МэВ.

Рентгеновское излучение, как и гамма-излучение, обладает малой ионизирующей способностью и большой глубиной проникновения.

Рассмотрим основные показатели и единицы измерения, применяемые для характеристики ионизирующих излучений. Как уже сказано выше, при распаде ядер атомов его продукты вылетают с большой скоростью. Встречая на своем пути ту или иную преграду, они производят в ее веществе различные изменения. Воздействие излучения на вещество будет тем больше, чем больше распадов происходит в единицу времени. Для характеристики числа распадов вводится понятие активности (А) радиоактивного вещества, под которым понимают число самопроизвольных ядерных превращений dN в этом веществе за малый промежуток времени dt, деленное на этот промежуток времени:

 

А = dN/ dt (6.3)

 

Единицей измерения активности является Кюри (Кu), соответствующая 3,7- 10'° ядерных превращений в секунду.

Для характеристики воздействия ионизирующего излечения на вещество введено понятие дозы излучения.

Дозой излучения называется часть энергии, переданная излучением веществу и поглощенная им. Количественной характеристикой взаимодействия, ионизирующею излучения и вещества является поглощенная доза излучении (D), равная отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе облученного вещества в этом объеме dm:

 

D = dE/ dm (6.4)

 

Поглощенная доза является основной дозиметрической: величиной. В системе СИ в качестве единицы поглощенной дозы принят грей (Гр). 1 Гр соответствует поглощению в среднем 1 Дж энергии ионизирующего излучения в массе вещества, равной 1 кг, т. е. 1 Гр = 1 Дж/кг.

Для оценки возможного ущерба здоровья при хроническом воздействии ионизирующего излучения произвольного состава введено понятие эквивалентной дозы (Н). Эта величина определяется как произведение поглощенной дозы Д на средний коэффициент качества излучения Q (безразмерный) и данной точке ткани человеческого тела, т. е.

 

H = D Q (6.4)

 

Единицей эквивалентной дозы в системе СИ является зиверт (Зв). В табл. 6.1. представлены сведения о величинах коэффициента Q.

 


Т а б л и ц а 6.1- Значение Q для различных видов излучения.

 

Вид излучения Q
Рентгеновское излучение Альфа-излучение, с энергией меньше 10МЭВ Бета-излучение Нейтроны с энергией 0,1-10 МЭВ  

 

Биологическое действие рассмотренных излучений на организм человека различно.

Альфа-частицы, проходя через вещество и сталкиваясь с атомами, ионизируют (заряжают) их, выбивая электроны. В редких случаях эти частицы поглощаются ядрами атомов, переводя их в состояние с большей энергией. Эта избыточная энергия способствует протеканию различных химических реакций, которые без облучения не идут или идут очень медленно. Альфа-излучение производит сильное действие на органические вещества, из которых состоит человеческий организм (жиры, белки и углеводы). На слизистых оболочках это излучение вызывает ожоги и другие воспалительные процессы.

Под действием бета- излучений происходит радиолиз (разложение) воды, содержащейся в биологических тканях, с образованием водорода, кислорода, пероксида водорода Н2О2, заряженных частиц (ионов) ОН- и НО2-, Продукты разложения воды обладают окислительными свойствами и вызывают разрушение многих органических веществ, из которых состоят ткани человеческого организма.

Действие гамма - и рентгеновского излучений на биологические ткани обусловлено в основном образующимися свободными электронами. Нейтроны, проходя через вещество, производят в нем наиболее сильные изменения по сравнению с другими ионизирующими изучениями.

Таким образом, биологическое действие ионизирующих излучений сводится к изменению структуры или разрушению различных органических веществ (молекул), из которых состоит организм человека. Это приводит к нарушению биохимических процессов, протекающих в клетках, или даже к их гибели, в результате чего происходит поражение организма в целом.

Различают внешнее и внутреннее облучение организма. Под внешним облучением понимают воздействие на организм ионизирующих излучений от внешних по отношению к нему источников. Внутреннее облучение осуществляется радиоактивными веществами, попавшими внутрь организма через дыхательные органы, желудочно-кишечный тракт или через кожные покровы. Источники внешнего излучения - космические лучи, естественные радиоактивные источники, находящиеся в атмосфере, воде, почве, продуктах питания и др., источники альфа-, бета-, гамма -, рентгеновского и нейтронного излучений, используемые в технике и медицине, ускорители заряженных частиц, ядерные реакторы (в том числе и аварии на ядерных реакторах) и ряд других.

Радиоактивные вещества, вызывающие внутреннее облучение организма, попадают в него при приеме пищи, курении, питье загрязненной воды. Поступление радиоактивных веществ в человеческий организм через кожу происходит в редких случаях (если кожа имеет повреждения или открытые раны). Внутреннее облучение организма длится до тех пор, пока радиоактивное вещество не распадается или не будет выведено из организма в результате процессов физиологического обмена. Внутреннее облучение опасно тем, что вызывает длительно незаживляющие язвы различных органов и злокачественные опухоли. При работе с радиоактивными веществами значительному облучению подвергаются руки операторов. Под воздействием ионизирующих излучений развивается хроническое или острое (лучевой ожог) поражение кожи рук. Хроническое поражение характеризуется сухостью кожи, появлением на ней трещин, изъявлением и другими симптомами. При остром поражении кистей рук возникают отеки, омертвление тканей, язвы, на месте образования которых возможно развитие злокачественных опухолей.

Под влиянием ионизирующих излучений у человека возникает лучевая болезнь. Различают три степени ее: первая (легкая), вторая и третья тяжелая.

Симптомами лучевой болезни первой степени являются слабость, головные боли, нарушение сна и аппетита, которые усиливаются на второй стадии заболевания, но к ним дополнительно присоединяются нарушения в деятельности сердечно-сосудистой системы, изменяется обмен веществ и состав крови. На третьей стадии болезни наблюдаются кровоизлияния и выпадение волос, нарушается деятельность центральной нервной системы и половых желез. У людей, перенесших лучевую болезнь, повышается вероятность развития злокачественных опухолей и заболеваний кроветворных органов. Лучевая болезнь в острой (тяжелой) форме развивается в результате облучения организма большими дозами ионизирующих излучений за короткий промежуток времени. Опасно воздействие на организм человека и малых доз радиации, так как при этом могут произойти нарушение наследственной информации человеческого организма, возникнуть мутации.

Нижний уровень развития легкой формы лучевой болезни возникает при эквивалентной дозе облучения приблизительно 1 Зв, тяжелая форма лучевой болезни, при которой погибает половина всех облученных, наступает при эквивалентной дозе облучения 4,5 Зв,. 100%-ный смертельный исход лучевой болезни соответствует эквивалентом дозе облучения 5,5—7,0 Зв.

В настоящее время разработан ряд химических препаратов (протекторов), существенно снижающих негативный эффект воздействия ионизирующего излучения на организм человека.

В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» НРБ-76, «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП 72-80. В соответствии с этими нормативными документами нормы облучения установлены для следующих трех категорий лиц:

• категория А - персонал, постоянно или временно работающий с источниками ионизирующих излучений;

• категория Б — ограниченная часть населения, которая по условиям размещения рабочих мест или по условиям проживания может подвергаться воздействию источников излучения;

• категория В — население страны, республики, края и области.

Для лиц категории А основным дозовым пределом является индивидуальная эквивалентная доза внешнего и внутреннего излучения за год (Зв/год) в зависимости от радиочувствительности органов (критические органы). Это предельно допустимая доза (ПДД) — наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет к состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Для персонала категории А индивидуальная эквивалентная доза (Н, Зв), накопленная в критическом органе и за время Т (лет) с начала профессиональной работы, не должна превышать значения, определяемого по формуле:

Н = ПДД Т (6.6)

Кроме того, доза, накопленная к 30 годам, не должна превышать 12 ПДД.

Для категории Б установлен предел дозы за год и юл (ПД, Зв/год), под которым понимают наибольшее среднее значение индивидуальной эквивалентной дозы за календарный год у критической группы лиц, при котором равномерное облучение в течение 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. В табл. 6.2. приведены основные дозовые пределы внешнего и внутреннего облучений в зависимости от радиочувствительности органов.

 

Таблица 6.2- Основные значения дозовых пределов внешнего и

внутреннего облучений.

Группа критических органов Органы и ткани человеческого организма ПДД для категории А, Зв/год ПДД для категории Б, Зв/год
       
  Все тело, гонады (половые органы), красный костный мозг 0,05   0,005  
  Любой отдельный орган, кроме гонад, красного костного мозга, костной ткани, щитовидной железы, кожи, кистей, предплечий, лодыжек и стоп 0,15   0,015  
продолжение таблицы 6.2
       
  Костная ткань, щитовидная железа, кожный покров, кисти, предплечья, лодыжки и стопы 0,30   0,03  

 

6.2.1 Средства защиты от ионизирующих излучений

Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. С целью реализации этих принципов на практике обязательно контролируются дозы облучения, полученные персоналом при работе с источниками ионизирующих излучений, работа проводится в специально оборудованных помещениях, используется защита расстоянием и временем, применяются различные средства коллективной и индивидуальной защиты.

Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контакт с источниками ионизирующих излучений, выдается индивидуальный дозиметр для контроля полученной дозы гамма-излучений. В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть и изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее пяти. Окраска стен, потолка и дверей в этих помещениях, а также устройство пола выполняются таким образом, чтобы исключить накопление радиоактивной пыли и избежать поглощения радиоактивных аэрозолей, паров и жидкостей отделочными материалами (окраска стен, дверей и в некоторых случаях потолков должна производиться масляными красками, полы покрываются материалами, не впитывающими жидкости, — линолеумом, полихлорвиниловым пластикатом и др.). Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин и неплотностей; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее одного раза в месяц проводят генеральную уборку помещений с обязательным мытьем горячей мыльной водой стен, окон, дверей, мебели и оборудования. Текущая влажная уборка помещений проводится ежедневно.

Для уменьшения облучения персонала все работы с этими источниками проводят с использованием длинных захватов или держателей.

Защита временем заключается в том, что работу с радиоактивными источниками проводят за такой период времени, чтобы доза облучения, полученная персоналом, не превышала предельно допустимого уровня.

Коллективные средства защиты от ионизирующих излучений регламентируются ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортировании и хранения источником ионизирующих излучений, а также или сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении – рабочей камере, то экранами служат ее стены, пол, потолок, изготовленные из защитных материалов. Такие экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты, поглощающие или ослабляющие излучение.

Для сооружения стационарных средств защиты стен, перекрытий, потолков и т. д. используют кирпич, бетон, баритобетон, и баритовую штукатурку (в их состав входит сульфат бария - BaSO4). Эти материалы надежно защищают персонал от воздействия гамма- и рентгеновского излучения.

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.

Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливают из свинца и стали.

Для работы с радиоактивными веществами, обладающими альфа- и бета- активностью, используют защитные перчаточные боксы.

Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны - органического стекла, стали, свинца и др.

При проведении работ с источниками ионизирующих излучений опасная зона должна быть ограничена предупреждающими надписями.

К средствам индивидуальной защиты от ионизирующих излучений относится спецодежда - халаты, комбинезоны, полукомбинезоны и шапочки, ни отопленные из хлопчатобумажной ткани. При значительном загрязнении производственного помещения радиоактивными веществами на спецодежду из ткани дополнительно надевают пленочную одежду (нарукавники, брюки, фартук, халат и т.д.), изготовленную из пластика. Как уже сказано выше, для защиты рук следует использовать просвинцованные резиновые перчатки.

В тех случаях, когда приходится работать в условиях значительного радиационного загрязнения, для защиты персонала используют пневмокостюмы (скафандры) из пластмассовых материалов с поддувом по гибким шлангам воздуха или снабженные кислородным аппаратом. Дни поддержания нормальных температурных условий в скафандре расход воздуха должен составлять 150-200 л/мин.

Для защиты органов зрения от излучения применяют очки со стеклами, содержащими специальные добавки (фосфат вольфрама или свинец), а при работе с источниками альфа- и бета- излучений глаза защищают щитками из органического стекла.

Если в воздухе находятся радиоактивные аэрозоли, то надежным средством защиты органов дыхания являются респираторы и противогазы.

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 323; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.06 сек.