Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Двудольные графы




104. Является ли двудольным графом

∙ простая цепь?

∙ дерево?

∙ полный граф?

105. Докажите, что дерево является двудольным графом. Какие деревья являются полными двудольными графами.

106. В теннисном турнире каждый игрок команды «синих» встречается с каждым игроком команды «красных». Число игроков в командах одинаково и не более восьми. «Синие» выиграли в четыре раза больше встреч, чем «красные». Сколько человек в каждой из команд?

107. Школьники на кружке решали 16 задачи. Каждый из 16 школьников решил по четыре задачи, и каждая задача была решена четырьмя школьниками. Доказать, что можно организовать разбор задач так, чтобы каждый рассказал одну решенную им задачу и чтобы все задачи были разобраны.

108. Каждый из учеников 9 «А» класса дружит с тремя учениками 9 «Б» класса, а каждый из учеников 9 «Б» класса дружит с тремя учениками 9 «А» класса. Докажите, что число учеников в обоих классах одинаково.

109. Строительному управлению для выполнения работы требуются каменщик плотник, водопроводчик и слесарь. На эти должности имеются пять претендентов: один может работать каменщиком, другой – плотником, третий – каменщиком и водопроводчиком и еще двое имеют по две специальности – водопроводчика и слесаря. Можно ли охватить весь фронт работ (используя четверых рабочих)? Если да, то подробно проверьте выполнение условия теоремы Холла.

110. Десять кандидатов готовятся к двум космическим экспедициям на Марс. Поскольку экспедиции будут продолжаться несколько лет, а их участники окажутся в замкнутом пространстве небольшого объема, то большое значение приобретает психологическая совместимость членов экипажа. Путем тестирования установлены пары кандидатов, присутствие которых в одной и той же экспедиции было бы нежелательным. Результаты тестирования отражены в таблице. (Если на пересечении I строки j столбца находится знак «+», то участие I и j кандидатов в одной экспедиции нежелательно.) Разделите кандидатов на две группы для участия в экспедициях.

                     
    + + +            
  +       +          
  +           +      
  +         +        
    +           +    
        +           +
      +         +   +
          +   +   +  
                +   +
            + +   +  

111. В школе 4 кружка: домоводство, математический кружек, компьютеный клуб и кружек английского языка. Пять человек из класса посещают эти кружки, причем один и тот же ученик может являться членом нескольких кружков. Можно ли выбрать старосту в каждом кружке так, чтобы ни один человек не был старостой сразу в двух кружках, в следующих случаях:

1. Кружок домоводства посещают 1, 3 и 4 ученики, математический кружок – 1, 4 и 5, компьютерный клуб – 2, 3 и 5, кружок английского языка – 2, 4 и 5.

2. Кружок домоводства посещают 1 и 3 ученики, математический кружок – 2 и 3, компьютерный клуб – 2 и 1, кружок английского языка – 3.

3. Кружок домоводства посещают 1, 3 и 4 ученики, математический кружок – 2 и 5, компьютерный клуб – 2 и 5, кружок английского языка – 2.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 751; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.