Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нейронные сети




Статистические пакеты

Предметно-ориентированные аналитические системы

Классы систем Data Mining

 

Data Mining является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и др. Отсюда обилие методов и алгоритмов, реализованных в различных действующих системах Data Mining. Многие из таких систем интегрируют в себе сразу несколько подходов. Тем не менее, как правило, в каждой системе имеется какой-то ключевой компонент, метод, на который делается ставка. Ниже приводится классификация указанных методов.

 

Данные системы очень разнообразны и зависят от предметной области. Для технических систем это могут быть программы всевозможных расчетов показателей эффективности, прогнозирование поведения систем при воздействии различных видов факторов. Указанные методы максимально учитывают специфику рассматриваемой предметной области, используют профессиональный язык, поэтому их иногда называют методами технического анализа.

 

Последние версии почти всех известных статистических пакетов включают наряду с традиционными статистическими методами также элементы Data Mining. Но основное внимание в них уделяется все же классическим методикам — корреляционному, регрессионному, факторному анализу и др.

Недостатком систем этого класса считают требование к специальной подготовке пользователя. Также отмечают, что мощные современные статистические пакеты являются слишком «тяжеловесными» для массового применения в финансах и бизнесе. К тому же часто эти системы весьма дороги (от $1000 до $15000).

Есть еще более серьезный принципиальный недостаток статистических пакетов, ограничивающий их применение в Data Mining. Большинство методов, входящих в состав пакетов, опирается на статистическую парадигму, которая базируется на усредненных характеристиках выборки. А эти характеристики при исследовании реальных сложных феноменов часто являются фиктивными величинами.

В качестве примеров наиболее мощных и распространенных статистических пакетов можно назвать SAS (компания SAS Institute), SPSS (SPSS), STATGRAPICS (Manugistics), STATISTICA, STADIA и др.

 

Нейронные сети — это класс моделей, основанных на биологической аналогии с мозгом человека и предназначенных (после прохождения этапа так называемого обучения на имеющихся данных) для решения разнообразных задач анализа данных. При применении этих методов прежде всего встает вопрос выбора конкретной архитектуры сети (числа «слоев» и количества «нейронов» в каждом из них). Размер и структура сети должны соответствовать (например, в смысле формальной вычислительной сложности) существу исследуемого явления. Поскольку на начальном этапе анализа природа явления обычно известна плохо, выбор архитектуры является непростой задачей и часто связан с длительным процессом «проб и ошибок» (однако в последнее время стали появляться нейронно-сетевые программы, в которых для решения трудоемкой задачи поиска наилучшей архитектуры сети применяются методы искусственного интеллекта).

В одной из наиболее распространенных архитектур, многослойном персептроне с обратным распространением ошибки, имитируется работа нейронов в составе иерархической сети, где каждый нейрон более высокого уровня соединен своими входами с выходами нейронов нижележащего слоя. На нейроны самого нижнего слоя подаются значения входных параметров, на основе которых нужно принимать какие-то решения, прогнозировать развитие ситуации и т. д. Эти значения рассматриваются как сигналы, передающиеся в следующий слой с ослаблением или усилением в зависимости от числовых значений (весов), приписываемых межнейронным связям.

Построенная сеть подвергается процессу так называемого обучения. На этом этапе нейроны сети итеративно обрабатывают входные данные и корректируют свои веса так, чтобы сеть наилучшим образом прогнозировала (в традиционных терминах следовало бы сказать «осуществляла подгонку») данные, на которых выполняется «обучение». После обучения на имеющихся данных сеть готова к работе и может использоваться для построения прогнозов.

Нейронная сеть, полученная в результате «обучения», выражает закономерности, присутствующие в данных. При таком подходе она оказывается функциональным эквивалентом некоторой модели зависимостей между переменными, подобной тем, которые строятся в традиционном моделировании. Однако в отличие от традиционных моделей, в случае нейронных сетей эти зависимости не могут быть записаны в явном виде, подобно тому, как это делается в статистике.

Иногда нейронные сети выдают прогноз очень высокого качества, однако они представляют собой типичный пример нетеоретического подхода к исследованию (иногда это называют «черным ящиком»). При таком подходе сосредотачиваются исключительно на фактическом результате, в данном случае – на точности прогнозов и их прикладной ценности, а не на сути механизмов, лежащих в основе явления или соответствии полученных результатов какой-либо имеющейся теории. Следует, однако, отметить, что методы нейронных сетей могут применяться и в исследованиях, направленных на построение объясняющей модели явления, поскольку нейронные сети помогают изучать данные с целью поиска значимых переменных или групп таких переменных. Более того, сейчас имеются нейросетевые программы, которые с помощью сложных алгоритмов могут находить наиболее важные входные переменные, что уже непосредственно помогает строить модель.

Одно из главных преимуществ нейронных сетей состоит в том, что они, по крайней мере теоретически, могут аппроксимировать любую непрерывную функцию, и поэтому исследователю нет необходимости заранее принимать какие-либо гипотезы относительно модели и даже, в ряде случаев, о том, какие переменные действительно важны.

Основным недостатком нейросетевой парадигмы является необходимость иметь очень большой объем обучающей выборки. Другой существенный недостаток заключается в том, что даже обученная нейронная сеть представляет собой «черный ящик». Знания, зафиксированные как веса нескольких сотен межнейронных связей, совершенно не поддаются анализу и интерпретации человеком (известные попытки дать интерпретацию структуре настроенной нейросети выглядят неубедительными – система «KINOsuite-PR»).

Другим существенным недостатком нейронных сетей является то, что окончательное решение зависит от начальных установок сети, и его практически невозможно интерпретировать в традиционных аналитических терминах.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 725; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.