Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Оформление лабораторной работы к зачету. Выполнение всех пунктов раздела описания «оформление отчета»




Выполнение всех пунктов раздела описания «Оформление отчета».

Графики должны удовлетворять всем требованиям, приведенным ниже.

Для всех величин в таблицах должна быть записана соответствующая единица измерения.

Записаны выводы по каждому графику (см. ниже шаблон)

Выписан ответ по установленной форме (см. ниже шаблон).

Записаны выводы по ответу (см. ниже шаблон).

 

Г Р А Ф И К (требования):

· на компьютере, размер не менее 1/2 листа,

· на графике: оси декартовой системы, на концах осей - стрелки, индексы величин, единицы измерения, 10N,

· на каждой оси - равномерный масштаб (риски через равные промежутки, числа через равное количество рисок),

· под графиком - полное название графика СЛОВАМИ,

· на графике - экспериментальные и теоретические точки ярко,

· форма графика соответствует теоретической зависимости (не ломаная).

·

 

ВЫВОД по ГРАФИКУ (шаблон):

Полученный экспериментально график зависимости __________________ от

название функции словами

______________ имеет вид прямой (проходящей через начало координат,

название аргумента

параболы, гиперболы, плавной кривой) и качественно совпадает с теорети-ческой зависимостью данных характеристик, имеющей вид ______________.

формула

 

ОТВЕТ: По результатам измерений и расчетов получено значение _________________________, равное _____ = (___ ± ____) 10 ___ _________

название физической характеристики символ среднее ошибка степень един.измер

 

ВЫВОД по ОТВЕТУ (шаблон):

Полученное экспериментально значение величины _________________,

полное название словами

равное _________________, с точностью до ошибки измерений,

число, единица измерения

составляющей ________________, совпадает (не совпадает) с табличным

число, единица измерения

(теоретическим) значением данной величины, равным ________________.

число, единица измерения

 

 

 

 

 

ЛАБОРАТОРНАЯ РАБОТА № 4_1

 

МОДЕЛИРОВАНИЕ ОПТИЧЕСКИХ СИСТЕМ

 

Ознакомьтесь с теорией в конспекте и в учебниках: 1. Трофимова Т.И. Курс физики. § 166. 2. Детлаф А.А., Яворский Б.М. Курс физики § 32.7.

Запустите программу «Оптика», «Зрительная труба Кеплера» и «Микроскоп». Нажмите вверху внутренних окон указанных разделов кнопки с изображением страницы. Прочитайте краткие теоретические сведения об этих оптических системах и запишите их в свой конспект.

 

ЦЕЛЬ РАБОТЫ:

· Ознакомление с оптическими схемами зрительной трубы Кеплера и микроскопа.

· Моделирование этих схем из простых линз.

· Проверка формул увеличения зрительной трубы Кеплера и микроскопа.

 

КРАТКАЯ ТЕОРИЯ:

 

Зрительная труба Кеплера представляет собой оптическую систему, предназначенную для наблюдения удалённых предметов. Если лучи от предмета приходят в трубу в виде параллельных пучков, то оптическая система трубы называется телескопической.

На рис. 1 представлена оптическая схема зрительной трубы Кеплера. Она состоит из длиннофокусного объектива 1 и окуляра 2 – линзы с меньшим фокусным расстоянием.

 

2

 

 

D D¢

G

j y

F1 F2

 

Рис. 1

 

Второй главный фокус F1 объектива совпадает с первым главным фокусом F2 окуляра, благодаря чему падающий в объектив параллельный пучок лучей выходит из окуляра также параллельным пучком. Как показано на рисунке 1, объектив 1 зрительной трубы образует обратное действительное изображение G бесконечно удалённого предмета, которое рассматривается в окуляр 2.

Увеличение трубы Г является угловым увеличением и равно отношению

 

Г = , (1)

где y - угол, под которым предмет наблюдается в трубу (согласно правилу знаков, этот угол отрицательный); j - угол, под которым предмет виден невооружённым глазом (если глаз поместить вместо объектива трубы на оптической оси).

Ширина параллельного пучка лучей D, входящих в объектив, обычно равна диаметру объектива. Ширина пучка , выходящего из окуляра, определяется диаметром выходного зрачка системы. Выходной зрачок является изображением входного зрачка, даваемого окуляром.

Из рис. 1 имеем для увеличения Г:

Г = - (2), Г = - (3)

Соотношение (2) показывает, во сколько раз увеличиваются угловые размеры изображения в сравнении с угловыми размерами предмета при наблюдении через трубу.

Линейное увеличение b находится по формулам геометрической оптики:

Гb = 1 (4), следовательно b = - = - . (5)

Так как < D, то зрительная труба даёт уменьшение линейных размеров наблюдаемых объектов.

Микроскоп предназначен для наблюдения мелких предметов, не различимых глазом. На рис. 2 показана оптическая схема микроскопа.

1

2

1 3

Y 2 F1 F2

F1 3

-Y¢ 3¢

-Y ¢¢ D 2¢

 

d0 Рис. 2

 

Микроскоп состоит из двух линз: короткофокусного объектива 1 и окуляра 2, фокусное расстояние которого больше, чем у окуляра. Предмет Y располагается вблизи первого фокуса F1 объектива так, что действительное увеличенное обратное изображение - Y¢ получается вблизи первого фокуса F2 окуляра 2 – между ним и окуляром. Окуляр действует как лупа, давая мнимое изображение -U¢¢ на расстоянии наилучшего зрения d0 (d0 = 0,25 м) от глаза 3, который находится непосредственно за окуляром 2. Лучи 1,2,3 позволяют получить изображение -U¢; лучи 1¢, 2¢, 3¢, попадая в систему глаза 3, сходятся на сетчатке глаза, где дают изображение, соответствующее мнимому изображению -U¢¢, даваемому окуляром как лупой. Без участия глаза изображения не видно, а из окуляра выходит расходящийся пучок лучей. Расстояние D между вторым фокусом объектива и первым фокусом окуляра называется оптическим интервалом.

Если предмет Y поместить на расстоянии d1 от объектива микроскопа, его изображение Y´ будет находиться от объектива на расстоянии f1, удовлетворяющем уравнению:

.

Изображение предмета будет увеличено при этом в:

раз. (6)

Окуляр располагают относительно изображения Y´ так, чтобы оно рассматривалось через него как через лупу. Окончательное изображение Y´´ будет мнимым и будет отстоять от окуляра на расстоянии f2. Если расстояние d2 от окуляра до промежуточного изображения Y´ подобрано так, что оно удовлетворяет уравнению:

,

то увеличение изображения Y´, даваемое окуляром, при этом окажется равным:

. (7)

Увеличение микроскопа Г вычисляется как произведение увеличений объектива и окуляра:

Г = kобkок (8)

В случае, когда F1 и F2 много меньше оптического интервала D, увеличение микроскопа выражается простой формулой:

. (9)

ИЗМЕРЕНИЯ:

ЭКСПЕРИМЕНТ 1.

Зрительная труба Кеплера

 

1. Подведите маркер мыши к движку регулятора F1, нажмите левую кнопку мыши и, удерживая её в нажатом состоянии, двигайте движок до установки значения F1, взятого из таблицы 1 для вашей бригады.

2. Установите аналогичным образом F2 и j.

3. Запишите в таблицу 2 значение Гт , взятое из нижнего правого окна схемы зрительной трубы Кеплера.

4. С помощью миллиметровой линейки измерьте на экране монитора D и D¢ и запишите эти значения в таблицу 2.

5. Рассчитайте значение Гэ = и запишите это значение в таблицу 2.

6. Сравните полученное значение Гэ со значением Гт.

7. Устанавливая вторые значения F1 и F2, взятые из таблицы 1 для вашей бригады, повторите измерения по п. 2-6, записывая результаты измерений в табл. 2.

8. Оцените абсолютную погрешность измерений.

 

 

ТАБЛИЦА 1.

Бригада                
F1 мм                
F2 мм                
j 0,00 0,01 0,02 0,03 -0,01 -0,02 -0,03 -0,04

 

ТАБЛИЦА 2.

Гт   D мм D¢мм Гэ э
         
                   

 

ЭКСПЕРИМЕНТ 2. Микроскоп.

 

1. Подведите маркер мыши к движку регулятора фокусного расстояния

объектива микроскопа, нажмите левую кнопку мыши и, удерживая её в нажатом состоянии, перемещайте движок до установки F1, взятого из таблицы 1 для вашей бригады.

2. Установите аналогичным образом фокусное расстояние окуляра F2 и запишите эти значения в табл. 2.

3. С помощью миллиметровой линейки измерьте расстояния d1, d2, f1, f2 и запишите их в таблицу 2.

4. По формулам (6) и (7) и (8) рассчитайте kоб, kок и Г и запишите эти значения в табл. 2.

5. Рассчитайте по формуле (9) теоретическое значение оптического интервала Dт по параметрам, указанным в нижней части окна.

6.Определите масштаб шкалы окна оптической схемы микроскопа. Для этого измерьте с помощью миллиметровой линейки на экране монитора фокусное расстояние F1 и сопоставьте его со значением, указанным в левом нижнем прямоугольнике окна оптической схемы.

7.Измерьте с помощью миллиметровой линейки на экране монитора оптический интервал микроскопа, приведите его в соответствие с масштабом шкалы окна и запишите полученное значение интервала в табл. 2 (графа Dэ).

8.Сопоставьте полученные экспериментальные значения оптического интервала и увеличения микроскопа с указанными в окошке опыта значениями и сделайте анализ опыта.

9. Сделайте оценку погрешности измерений.

 

ТАБЛИЦА 1.

Бригада                
F1 мм                
F2 мм                

 

ТАБЛИЦА 2.

F1 мм F2 мм d1 мм d2 мм f1 мм f2 мм kоб kок Г ∆э мм
                   
                   

 

Вопросы и задания для самоконтроля

 

1. Что называется линзой?

2. Какая линза называется тонкой?

3. Что такое главная и побочная оптические оси?

4. Что называется фокусом линзы?

5. Как можно построить изображение произвольной точки в любой линзе?

6. Можно ли с помощью рассеивающей линзы получить увеличенное изображение?

7. Можно ли с помощью собирающей линзы получить уменьшенное изображение предмета?

8. Сформулируйте принцип Ферма.

9. Что называется оптической силой линзы, в каких единицах эта сила измеряется?

10. Запишите формулу тонкой линзы.

11. Назовите аберрации оптических систем.

12. Постройте ход лучей в микроскопе, зрительной трубе Кеплера и фотоаппарате.

13. Какая оптическая система называется телескопической?

 

 

ЛАБОРАТОРНАЯ РАБОТА № 4_2.

ДИФРАКЦИЯ И ИНТЕРФЕРЕНЦИЯ

 

Ознакомьтесь с теорией в конспекте, учебнике (Савельев, т.2, §119,125-127,129,130). Запустите программу. Выберите «Оптика» и «Интерференционный опыт Юнга». Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Необходимое запишите в свой конспект.

ЦЕЛЬ РАБОТЫ:

* Знакомство с моделированием процесса сложения когерентных

электромагнитных волн.

* Экспериментальное исследование закономерностей взаимодействия свето-

вых волн от двух источников (щелей).

КРАТКАЯ ТЕОРИЯ:

Между ДИФРАКЦИЕЙ и ИНТЕРФЕРЕНЦИЕЙ нет существенных физических различий. Оба явления заключаются в перераспределении в пространстве энергии светового потока, возникающем в результате суперпозиции волн.

КОГЕРЕНТНОСТЬЮ называется согласованное протекание нескольких колебательных или волновых процессов.

Когерентными называются волны, для которых разность фаз возбуждаемых ими колебаний остается постоянной во времени. Когерентными являются гармонические волны с кратными частотами.

ИНТЕРФЕРЕНЦИЕЙ называется устойчивое перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным количеством дискретных когерентных источников волн.

ДИФРАКЦИЕЙ называется устойчивое перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых расположенными непрерывно когерентными источниками волн. Одним из проявлений дифракции является распространение волны в область геометрической тени, т.е. туда, куда не попадают световые лучи.

ПРИНЦИП ГЮЙГЕНСА: каждый элемент волновой поверхности является источником вторичной сферической волны, а волна в любой точке перед этой поверхностью (с другой стороны от поверхности, нежели реальный источник волны) может быть найдена как результат суперпозиции волн, излучаемых указанными вторичными источниками.

ЗОНАМИ ФРЕНЕЛЯ называются такие участки на поверхности волнового фронта, для которых излучение от двух соседних участков при сложении дает практически нулевой (минимальный) результат (излучение от двух соседних зон Френеля компенсируется). Расстояния от краев каждой зоны до точки наблюдения отличаются на l/2.

Величина напряженности электрического поля dE электромагнитной волны (ЭМВ), излучаемой элементарным участком площадью dS волновой поверхности в точке наблюдения, расположенной на расстоянии r от этого участка, равна:

,

где множитель а0 определяется амплитудой светового колебания в том месте, где расположена площадка dS, коэффициент К зависит от угла между нормалью к площадке dS и направлением на точку наблюдения,

k = 2p/l - волновое число.

Аналогичная формула будет справедлива для любого точечного источника гармонической волны.

 

Для двух точечных источников (см. рисунок), расположенных на расстоянии d друг от друга на линии, параллельной экрану, отстоящему от линии источников (1 и 2) на расстоянии L, максимум при интерференции волн на экране наблюдается при условии, что разность хода Dr волн, приходящих в данную точку, кратна длине волны:

Dr = ml (m = 0,1,2,...).

Формула связи:

d sin(j) = ml

для первого максимума и при большом расстоянии до экрана L>>d, когда

sin(j)» tg(j)» ,

преобразуется так:

, откуда XMAX = .

 

ЭКРАН




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 448; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.081 сек.