Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Статические и динамические модели




Непрерывные и дискретные модели

Непрерывные модели отражают непрерывные процессы, протекающие, в частности, во времени. Значения независимой переменной (аргумента) принадлежат континуальному множеству. Континуальное множество обладает свойством, соответственно которому между любыми сколь угодно близкими точками множества всегда можно найти еще более близкие точки. Очень часто такой характер изменения приписывается времени.

Непрерывными моделями достаточно точно описываются такие реальные процессы, как изменение силы тока в определенной точке электрической схемы, изменение угловой скорости на выходе электропривода, набор линейной скорости при разгоне автомобиля, истечение газа или жидкости из резервуара и т.п.

Дискретные модели описывают дискретные, т.е. прерывистые процессы. Такие процессы происходят, например, в дискретных СУ, содержащих импульсный элемент (ключ), периодически замыкающий цепь через постоянный тактовый период Т.

Дискретными моделями достаточно точно описываются такие реальные процессы, как штамповка деталей, продажа мелких товаров с помощью автомата, работа микропроцессора и т.п.

Существуют также комбинированные – дискретно-непрерывные модели, в которых обычно можно отделить непрерывную часть от дискретной.

Статической называется модель объекта, отражающая оригинал в какой-то отдельный момент времени, т.е. «моментальная фотография» объекта. Например, буквально фотография или схема.

С фотографией (рис. 1.11) все ясно, что же касается схемы, то даже если это структурная схема с указанием передаточных функций звеньев, по ней явно не видно, как модель изменяется с течением времени (рис. 1.12).

Рис.1.11. Фотография как пример статической модели

 

 

Рис. 1.12. Структурная схема системы

 

Другой очевидный и знакомый пример статической модели –статическая характеристика, т.е. зависимость выходной переменной объекта (системы) от входной переменной в установившемся режиме, т.е. при t®∞: y(∞)=F[x(∞)] (рис. 1.13).

Рис. 1.13. Статическая характеристика системы ” System

Динамическая модель, в отличие от статической, учитывает изменения, происходящие в системе с течением времени. Это может выражаться в зависимости входной, выходной и промежуточных переменных от времени. Примером могут служить переходные функции – реакции систем на единичное ступенчатое входное воздействие (рис. 1.14).

Рис. 1.14. Переходная функция h(t) системы “ System

 

Обычно переходные функции получаются в результате: 1) аналитического решения; 2) численного интегрирования дифференциальных уравнений, описывающих исследуемую систему; 3) обратного преобразования Лапласа от передаточной функции системы, деленной на s. Модельв виде дифференциальных уравнений (ДУ) является широко распространенной динамической моделью.

Пример. Пусть система описывается моделью в виде дифференциального уравнения:

входное воздействие x(t)= 1 [t] – единичное ступенчатое (как на рис. 1.14), а начальные условия имеют вид: y(t= 0 ) = 0, т.е. процесс начинается из начала координат.

Аналитическое решение. Это линейное дифференциальное уравнение первого порядка с постоянными коэффициентами (стационарное). Его решение складывается из двух слагаемых – общего и частного решения:

Общее решение ищется в виде:

где А – неизвестный коэффициент, определяемый из начальных условий;

l – корень характеристического уравнения, которое в данном случае выглядит так:

,

откуда l=– 2.

В стандартной форме исходное уравнение должно иметь при y(t) коэффициент, равный единице. Для этого исходное уравнение разделим на 4 и получим:

Частное решение зависит от вида правой части ДУ; в данном примере, поскольку x(t)= 1 [t], частное решение будет равно константе:

Суммарное решение будет выглядеть так:

Теперь, подставив в решение y(t) начальное условие (для уравнения 1-го порядка оно одно), можно найти значение коэффициента А:

откуда А = – 1,25. Окончательно решение имеет вид:

Поскольку входным воздействием было единичное ступенчатое, то полученное решение является переходной функцией и обозначается, как обычно, h(t). График этой функции показан на рис. 1.15.

Рис. 1.15. Переходная функция h(t) – решение ДУ из примера

 

Подобный h(t) характер (с разной погрешностью) имеют такие процессы, как разгон автомобиля, нагрев жидкости, накопление знаний в некоторой предметной области, увеличение численности популяции животных, рост производства (при определенных условиях) и многие другие. В этом заключается одно из важнейших свойств математическихмоделей – их универсальность.

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 1268; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.