Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кибернетические модели систем




Классификация видов моделей

Рассмотренные выше виды моделей входят в классификацию, приведенную в учебнике [5]. Схема классификации приведена на рис. 1.20.

На схеме темным фоном выделены те виды моделей, которые изучаются в данной дисциплине более подробно.

Особенности использования детерминированных и стохастических, дискретных и непрерывных, статических и динамических, стационарных и нестационарных, распределенных и сосредоточенных моделей были рассмотрены выше.

В зависимости от формы представления оригинала, т.е. средств, используемых при создании моделей, можно выделить идеальное(абстрактное) и реальное моделирование.

Идеальное, или абстрактное моделирование зачастую позволяет исследовать модели объектов, которые практически нереализуемы в заданном интервале времени или не поддаются физическим экспериментам. Идеальное моделирование, как уже говорилось, реализуется посредством сознания человека в виде наглядных, символических и математических моделей.

Рис. 1.20. Схема классификации видов идеальных и реальных моделей

 

Наглядные модели создаются на основе представлений людей о реальных объектах и явлениях и о протекающих в них процессах. При этом гипотетические моделиявляются наименее информативными, опираются на недостаточный для построения формальных моделей уровень знаний исследователя об объекте, отраженный в гипотезах, положенных в основу этих моделей.

Аналоговые модели используют аналогии разных уровней: от полной аналогии, существующей только для относительно простых объектов, до более низких уровней частных аналогий, охватывающих несколько или даже всего одну сторону функционирования сложного объекта. Идеальные наглядные макеты применяются в тех случаях, когда процессы, протекающие в реальном объекте, не поддаются физическому моделированию. Для построения идеальных макетов также используются аналогии, как правило, основанные на причинно-следственных связях между процессами и явлениями, происходящими в моделируемом объекте.

Символьные модели включают знаковые и языковые модели, рассмотренные выше (пп. 1.4.7 и 1.4.8). Они представляют собой логические объекты, замещающие реальные объекты-оригиналы и выражающие с помощью определенной системы (алфавита) знаков или символов основные понятия этих оригиналов, а с помощью логических операций – отношения между понятиями.

Математические модели представляют собой математические объекты, соответствующие реальным объектам или процессам, конкретный вид которых зависит как от природы реального объекта, так и от задач исследования и требований адекватности и точности их решения. Математические модели подразделяют на аналитические, имитационные и комбинированные.

Аналитическиемодели характеризуются тем, что процессы функционирования элементов исходной реальной системы записываются в них в виде функциональных соотношений: алгебраических, дифференциальных, интегральных, конечно-разностных и др., а также в виде логических условий. Примером могут служить математические аналитические модели, использующие переменные состояния и аппарат матриц, подробно рассмотренные в п. 2.4 данного учебника. Полученные аналитические модели исследуют следующими методами: 1) аналитическим; 2) численным; 3) качественным.

Аналитический метод исследования необходим в том случае, когда нужно получить в общем виде явные зависимости для искомых характеристик. Аналитический метод решения продемонстрирован в примере п. 1.5.4. При невозможности или нецелесообразности решения уравнений в общем виде стремятся получить числовые результаты для конкретных начальных данных, что и приводит к так называемому численному методу исследования. Подобный численный метод решения дифференциальных уравнений рассматривается в гл. 3. Качественный метод исследования позволяет даже при отсутствии решения в явном виде определить некоторые важные свойства этого решения, например, его устойчивость.

Как правило, аналитический метод применим к относительно простым объектам и процессам или к упрощенным моделям. Как это было показано, возможно аналитическое решение линейных стационарных дифференциальных уравнений, но это невозможно в общем случае для нелинейных и/или нестационарных дифференциальных уравнений. Численный метод более универсален и позволяет исследовать (по сравнению с аналитическим)более широкий класс систем. Кроме того, он ориентирован на применение компьютеров. Качественные методы анализа используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

Имитационные модели отображают все элементарные явления, составляющие моделируемый процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состоянии процесса в определенные моменты времени и оценить характеристики процесса. Основное преимущество имитационного моделирования по сравнению с аналитическимзаключается в возможности решения более сложных задач. Имитационныемодели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные и нестационарные характеристики элементов, разнообразные случайные воздействия и другие, которые создают непреодолимые трудности при аналитических исследованиях. В настоящее время имитационное моделирование представляет собой наиболее эффективный метод исследования сложных и больших систем, а иногда и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования. Более подробно имитационные модели и методы рассмотрены в главе 6.

При реальном моделировании исследование характеристик объекта производится либо полностью на самом реальном объекте, либо частично на реальном объекте, частично на модели. При этом реальный объект может работать как в нормальном режиме, так и в специальных режимах (в ином масштабе времени или при других значениях параметров и переменных). Хотя реальное моделированиеследует признать наиболее адекватным, его возможности весьма ограничены в силу естественных ограничений со стороны реальных объектов. Так, например, проведение реального моделирования сложной автоматизированной системы управления технологическими процессами (АСУТП) потребовало бы прежде всего создания такой системы, а затем проведения экспериментов с управляемыми объектами, т.е. с технологическими процессами, что в большинстве случаев невозможно в условиях реальных действующих предприятий. К тому же в любом случае реальное моделирование обходится чрезвычайно дорого.

Натурные модели подразумевают использование при исследовании реальных объектов с последующей обработкой результатов эксперимента на основе теории подобия. Такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности. При производственном эксперименте натурное моделирование включает обобщение опыта, накопленного в ходе производственного процесса за счет обработки на базе теории подобия статистического материала по данному процессу и получения его обобщенных характеристик. При комплексных испытаниях повторение испытаний изделий позволяет выявить общие закономерности этих изделий, на основании которых можно судить об их надежности, качестве и других характеристиках.

Научный эксперимент отличается широким использованием средств автоматизации при его проведении, разнообразием средств обработки информации и возможностью вмешательства человека в этот процесс.

К реальным моделям относят также и физические модели, которые отличаются от натурных тем, что применяются в исследовательских установках, сохраняющих природу явлений, и обладают физическим подобием. В процессе задаются некоторые характеристики внешней среды, и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях со стороны внешней среды. Физическое моделирование может происходить как в реальном, так и в нереальном масштабе времени, а также и вообще без учета времени («замороженные» процессы).

 

Вопросы к разделу 1.5

 

  1. Чем отличаются прагматические модели от познавательных?
  2. Что именно зависит от времени в динамических моделях?
  3. Как получить статическую характеристику из дифференциального уравнения?
  4. При каких условиях можно перейти от стохастической модели к детерминированной?
  5. Что свидетельствует о нелинейности модели в виде дифференциального уравнения?
  6. Что свидетельствует о нелинейности модели в виде статической характеристики?
  7. Какие трудности возникают в связи с использованием нелинейных моделей?
  8. Какие преимущества дает использование нелинейных моделей?
  9. Какие трудности возникают в связи с использованием нестационарных моделей?
  10. Какие преимущества дает использование нестационарных моделей?
  11. Когда целесообразно использовать распределенные модели?

 

 

Прежде чем говорить о моделях систем, следует определить, что мы понимаем под системой. Существует много различных определений системы, поскольку это понятие используется очень широко. Очевидно, одним из главных характерных признаков системы является ее сложность, в отличие от неких простых элементов, входящих в нее.

Определение 1.6.1. Система– это совокупность подсистем и элементов, сложным образом взаимосвязанных между собой, действующая с определенной целью.

Это определение связывает сложность с наличием внутренней структуры системы как совокупности определенных связей между ее элементами и частями.

Другим важным признаком сложности системы считают неожиданный, непредсказуемый, «антиинтуитивный» (И.Пригожин) характер ее реакций на входные воздействия. Еще одно близкое к этому свойство сложных систем – так называемая эмерждентность (от англ. emergency – непредвиденный случай, крайность), которая означает возникновение в сложной системе некоторых новых, неожиданных свойств, которыми не обладали по отдельности ее составные части.

Пример. На рис. 1.21 а) показано простейшее цифровое устройство, которое к входному натуральному числу прибавляет единицу. Если соединить между собой два таких устройства так, как показано на рисунке 1.21 б), то на выходах такой системы появятся возрастающие бесконечные последовательности четных и нечетных натуральных чисел. Таким свойством генерации исходные элементы не обладали!

 

Рис. 1.21. К понятию эмерджентности систем

 

Существует также понятие большой системы, связанное с ее размерностью. В книге [1] приведены примеры возможных комбинаций понятий «большая» и «сложная» система.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 1816; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.