Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение исходной задачи симплексным методом




 

Симплексный метод задач линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальный план, и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план.

Полученная модель является задачей линейного программирования, функция F – целевая функция. Она является линейной функцией своих переменных (х12), ограничения на эти переменные тоже являются переменными.

Необходимо найти значения переменных х1 и х2 при которых данная функция F принимает максимальное значение, при соблюдении ограничений, накладываемых на эти переменные. Решение, удовлетворяющее системе ограничения и требования не отрицательности являются допустимыми, а решение удовлетворяющие одновременно и требованиям максимизации функции в целом является оптимальным.

Приведем систему к каноническому виду. Для этого введем балансовые переменные- х3, х4, х5 и получим модель в следующем виде:

3x1 +2х23 = 32

4x1 + 5х24= 48

x1 + 6х25= 40

хi≥0, i=1..5.

F= 6x1 + 11х2 →max.

Запишем данную задачу в исходную симплексную таблицу:

Сi Базис (xi) Ai0 х1 х2 х3 х4 х5
               
  х3            
  х4            
  х5            
  F   -6 -11      

Первые три строки этой таблицы содержат в условной форме систему ограничений, а именно в столбце ai 0 - записываются свободные члены уравнений. В столбцах х1, х2, х3, х4, х5 – записываются коэффициенты при соответствующих переменных этой системы.

Слева от столбца ai0 , в столбце (хi), записываются базисные переменные (которые ввели для баланса), содержащиеся в соответствующих уравнениях системы. Верхняя строка и крайний верхний столбец содержат коэффициенты при соответствующих переменных в целевой функции.

Последняя строка называется оценочной, а элементы строки – оценками. Первый элемент а00 представляет собой значение целевой функции на начальном этапе.

а00 = 0∙32+0∙48+0∙40=0

Остальные значения обозначаются а0k, получаются в результате скалярного умножения вектора столбца Сi на вектор столбец коэффициента при неизвестном xk c последующим вычитанием соответствующего элемента верхней строки, например: а01=(0∙3+0∙4+0∙1)-6 = -6

Для получения оптимального плана необходимо, чтобы все элементы оценочной строки симплексной таблицы были неотрицательными. Для этого:

1. выбираем в исходной таблице разрешающий столбец- p. Этот столбец соответствует наибольшей по абсолютной величине отрицательной оценке. В данной задаче это будет столбец х2 (т.к |-6| < |-11|).

2. выбираем в исходной таблице разрешающую строку – q., используя условие

, т.е. 32/2=16, 48/5=9,6, 40/6=6,66(min)

На перекрестке разрешающей строки и разрешающего столбца, получим разрешающий элемент - аqp. В данной задаче разрешающим элементом будет являться 6.

 

Сi Базис (xi) Ai0 х1 х2 х3 х4 х5  
           
                 
  х3            
  х4    
 
5

       
  х5             q
  F   -6 -11        
        p        

3. В новой симплексной таблице элементы разрешающей строки пересчитываем по формуле:

На месте разрешающего элемента ставим 1, в разрешающем столбце все элементы заменяем на - 0. остальные элементы и элементы оценочной строки пересчитываем по формуле прямоугольников:

Расчет по формуле прямоугольников представлен в таблице

Сi Базис (xi) Ai0 х1 х2 х3 х4 х5
         
  х3      
  х4      
  х2      
  F      

 

В полученной таблице в оценочной строке имеется отрицательный элемент - . Столбец, содержащий этот элемент, будет являться разрешающим, поэтому для нахождения разрешающей строки выполним следующее решение:

: =7

: = (min)

: = 40

Следовательно, на пересечении разрешающего столбца и разрешающей строки найдем необходимый элемент: .

 

Составляем новую таблицу - на месте разрешающего элемента ставим 1, в разрешающем столбце все элементы заменяем на - 0. остальные элементы и элементы пересчитываем по формуле прямоугольников.

Получим таблицу

 

Сi Базис (xi) Ai0 х1 х2 х3 х4 х5
         
  х3      
  х1      
  х2      
  F      

 

Все элементы оценочной строки симплексной таблицы неотрицательны, следовательно исходный план является оптимальным.

Оптимальное решение получаем в виде вектора

xопт = (х1, х2, х3, х4, х5)

Fmax = 92,63

Оптимальное решение к исходной задаче получается отбрасыванием из xопт компонент, связанными с балансовыми переменными х3, х4, х5, т.е

xопт =(, )

Fmax = ∙6-11∙ = =92,63

Следовательно, фабрике необходимо выпускать единицы продукции вида А и единицы продукции вида В, при этом максимальная прибыль составляет 92,63 тысячи рублей.

 




Поделиться с друзьями:


Дата добавления: 2015-04-25; Просмотров: 737; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.