Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Компьютерный инженерный анализ в машиностроении




 

После того как в результате проектирования получены объемные модели изделий, появляется возможность дополнить данные о геометрии некоторыми физико-механическими свойствами и попытаться исследовать модель изделия, подвергнув некоторым важнейшим тестам прямо на компьютере, не прибегая к дорогостоящему опытному изготовлению. Такая возможность позволяет сэкономить значительные средства за счет того, что на компьютере можно испытать гораздо больше вариантов проекта изделия, чем это было бы в рамках натурного теста. Для инженера технолога CAE-системы могут быть полезны при решении задач проектирования технологической оснастки и исследовании новых технологических процессов.

Состав различных видов анализа в различных CAE-системах разнообразен [6, 18]. В частности, решаются следующие задачи: кинематический анализ, анализ напряженно-деформированного состояния, анализ тепловых процессов, анализ поведения изделия при столкновениях и ударах, определение условий потери устойчивости конструкции, расчет характеристик усталостных разрушений, анализ процессов колебаний и др.

Большинство CAE-программ включают собственные средства построения геометрической модели изделия, а также снабжены стандартными форматами обмена графической информацией с пакетами конструирования, т.е. предварительная геометрическая модель может быть создана в CAD-системе.

Различные виды анализа, выполняемые в программных системах, основаны на классических инженерных подходах к разработке математических моделей поведения изделия при различных воздействиях.

Обычно исходная задача анализа формулируется в дифференциальных уравнениях с частными производными совместно с начальными и граничными условиями.

По используемому математическому аппарату методы решения задач в частных производных делят на две группы: аналитические и численные. В том редком случае, когда решение задачи может быть представлено в виде формулы, которая позволяет по заданному значению аргумента получить значение искомой функции, говорят, что решение получено в аналитической форме. Общий недостаток аналитических методов состоит в том, что область их применения обычно ограничивается простыми геометрическими конфигурациями, несложными граничными условиями и линейной постановкой задачи. Аналитические решения получают путем подстановок, функциона­льных преобразований, строго обосновывая некоторое количество принятых допущений.

В отличие от аналитических, в численных методах решения дифференциальных уравнений в частных производных в качестве неизвестных используются значения зависимой переменной (тем-пературы, перемещения, потенциала) в некотором конечном числе точек исходной области (в узлах расчетной сетки). Производится дискретизация дифференциальных уравнений с использованием численных методов. В результате специальных преобразований система уравнений в частных производных заменяется системой линейных алгебраических уравнений для неизвестных значений в узлах сетки. Алгоритмы решения таких систем на ЭВМ хорошо разработаны.

Наиболее распространенный численный метод в САПР – это метод конечных элементов (finite element method) – МКЭ. МКЭ предполагает предварительное разбиение исследуемой геометрической области на отдельные подобласти простой формы, связанные между собой конечным числом узлов – конечные элементы. Геометрическая модель превращается в сеточную (рисунок 4). В различных программах имеются специальные средства генерации конечно-элементных сеток с учетом кривизны поверхностей и других особенностей геометрии изделия. Различными бывают и типы конечных элементов: треугольники, четырехугольники, тетраэдры, призмы и др.

Рисунок 4 – Примеры конечно-элементных сеток
на твердотельных моделях

 

Кроме геометрических характеристик конечных элементов, содержанием базы данных расчета становятся свойства материала, граничные (пространственные) и начальные (временные) условия. Для описания свойств материала изделия используются параметры, необходимые для выполнения требуемого вида анализа. Так, в прочностном анализе учитываются модуль упругости (модуль Юнга), коэффициент Пуассона, плотность, коэффициент трения, модуль сдвига, коэффициент теплового расширения, коэффициент внутреннего трения. В качестве граничных условий – заданные значения действующих сил, моментов и узловых перемещений. Для проведения теплового анализа задают удельную теплоемкость, коэффициент теплопроводности, коэффициент конвективной теплоотдачи, температуру окружающей среды, граничные значения или законы изменения температур и тепловых потоков.

В CAE-системах существуют следующие возможности представления результатов решения задачи:

· визуализация линий или поверхностей уровня, например, с равными температурами или напряжениями;

· анимация нестационарного процесса;

· листинг результатов в виде таблицы значений искомых переменных в заданных узлах.

Часто возможна оценка погрешностей результатов анализа.

Рисунок 5 иллюстрирует порядок проведения прочностного анализа детали.

а б в

Рисунок 5 - Расчет напряженно-деформированного состояния:
а – геометрическая модель; б – расчетная схема;
в – визуализация расчета

 

Большинство систем конечно-элементного анализа обладают внутренними средствами, позволяющими создать практически любую нужную для анализа геометрию. Однако все развитые CAE-системы могут также импортировать геометрические данные либо через промежуточные файлы стандартных форматов (типа SAT, IGES, STEP, DXF), либо непосредственно из конкретных CAD. Однако исполь-зование геометрических моделей, подготовленных в CAD, часто затруднено с точки зрения конечно-элементного моделирования (слишком сложная сетка и др.).




Поделиться с друзьями:


Дата добавления: 2015-04-25; Просмотров: 1245; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.