Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структурная функция надежности. Примеры структурных функций




Билет № 19.

Не для всех систем удается построить структурную схему надежности. Примерами систем, для которых нет структурной схемы, являются так называемые структуры типа “k из n” - системы из n элементов, имеющих одинаковые функции надежности. Структура типа “k из n” работает тогда и только тогда, когда работают по крайней мере k ее элементов. При k=1 такая структура превращается в параллельное соединение, при k=n - в последовательное соединение.

Пусть функция надежности каждого элемента структуры p(t). Тогда вероятность того, что в момент t в структуре работает ровно i элементов, определяется по формуле Бернулли . Следовательно, надежность структуры типа “k из n” равна

.

Предположим, что все элементы структуры имеют показательное распределение наработки до отказа с интенсивностью l. Определим среднюю наработку до отказа всей системы.

Воспользуемся методом графа состояний. Для структуры типа “k из n” граф состояний изображен на рисунке 4.13.

Здесь - состояние, когда работают все n элементов,..., - работает к элементов, - отказ системы.

Среднее время пребывания системы в состоянии будет равно . Следовательно, средняя наработка структуры типа к из n равна

.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 370; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.