Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры решения задач 3 страница




(4)

Для средней линии тороида r=1/2(R1R2)=1/4(d1+d2). Подставив это выражение r в формулу (4), найдем

(5)

Магнитная индукция В 0в вакууме связана с напряженностью поля соотношением B 0 = m0 H. Следовательно,

(6)

Подставив значения величин в выражения (5) и (6), получим:

H =1,37 кА/м, B 0=1,6 мТл.

Пример 18. Виток, по которому течет ток I =20 А, свободно уста­новится в однородном магнитном поле В =16 мТл. Диаметр d витка равен 10 см. Какую работу нужно совершать, чтобы медленно по­вернуть виток на угол a=p/2 относительно оси, совпадающей с диа­метром?

Решение. При медленном повороте контура в магнитном поле индукционными токами можно пренебречь и считать ток в контуре

неизменным. Работа сил поля в этом случае определяется выраже­нием

где Ф1 и Ф2 — магнитные потоки, пронизывающие контур в началь­ном и конечном положениях.

Работа внешних сил будет равна модулю работе сил поля и про­тивоположна ей по знаку, т. е.

(1)

Так как в начальном положении контур установился свободно (по­ложение устойчивого равновесия), то момент внешних сил, действующий на контур, равен нулю. В этом положении вектор магнитного мо­мента Рис. 17 pm контура сонаправлен с вектором В (рис. 17, а) и магнит­ный поток Ф1 максима­лен (a=0, cos a=1), т. е. Ф1 =ВS (где S — площадь контура).

В ко­нечном положении (рис. 17, б) вектор pm перпендикулярен вектору B (a=p/2, cos a=0) и маг­нитный поток Ф2=0. Перепишем выражение (1) с учетом сделан­ных замечаний:

Так как площадь контура S=pd2/4. то работа

Убедимся в том, что правая часть равенства дает единицу работы (Дж):

Произведем вычисления:

Пример 19. В однородном магнитном поле с индукцией B =0,1 Тл равномерно вращается рамка, содержащая N= 1000 витков, с часто­той n= 1 c -1. Площадь S рамки равна 150 см2. Определить мгновен­ное значение ЭДС, соответствующее углу поворота рамки 30°.

Решение. Мгновенное значение ЭДС индукции , определя­ется основным уравнением электромагнитной индукции Фарадея — Максвелла:

(1)

Потокосцепление Y= , где N — число витков, пронизывае­мых магнитным потоком Ф. Подставив выражение Y в формулу (1), получим

(2)

При вращении рамки магнитный поток Ф, пронизывающий рам­ку в момент времени t, изменяется по закону Ф=ВS cosw t, где В — магнитная индукция; S — площадь рамки; w— угловая частота. Подставив в формулу (2) выражение Ф и продифференцировав по времени, найдем мгновенное значение ЭДС индукции:

(3)

Угловая частота со связана с частотой п вращения соотношением w=2p п. Подставив выражение со в формулу (3) и заменив w t на угол a, получим

(4)

Убедимся в том, что правая часть полученного равенства дает единицу ЭДС (В). Учтя, что 2 p, N и sin w t — величины безразмер­ные и неименованные, получим

Произведя вычисления по формуле (4), найдем

Пример. 20. По соленоиду течет ток I =2 А. Магнитный поток Ф, пронизывающий поперечное сечение соленоида, равен 4 мкВб. Оп­ределить индуктивность L соленоида, если он имеет N=800 витков.

Решение. Индуктивность L соленоида связана с потокосцеплением Y соотношением Y= LI, откуда L=Y/I. Заменив здесь потокосцепление Y его выражением через магнитный поток Ф и число витков N соленоида (Y=Ф N), получим

(1)

Произведя вычисления по формуле (1), получим

L == 1,6 мГн.

Пример 21. При скорости изменения силы тока D I /D t в соле­ноиде, равной 50 А/с, на его концах возникает ЭДС самоиндук­ции 0,08 В. Определить индуктивность L соленоида.

Решение. Индуктивность соленоида связана с ЭДС само­индукции и скоростью изменения силы тока в его обмотке соотноше­нием *

 

Вынося постоянную величину L за знак приращения, получим

Опустив знак минус в этом равенстве (направление ЭДС в данном случае несущественно) и выразив интересующую нас величину — индуктивность, получим

Сделав вычисления по этой формуле, найдем

L =1,6 мГн.

Пример 22. Обмотка соленоида состоит из одного слоя плотно прилегающих друг к другу витков медного провода диаметром d=0,2 мм. Диаметр D соленоида равен 5 см. По соленоиду течет ток I= 1 А. Определить количество электричества Q, протекающее через обмотку, если концы ее замкнуть накоротко. Толщиной изо­ляции пренебречь.

Решение. Возможны два способа решения, 1-й способ. Ко­личество электричества dQ, которое протекает по проводнику за время d t при силе тока I, определяется равенством

(1)

Полное количество электричества, протекающее через проводник за время t, будет . Сила тока в данном случае убывает экспоненциально со временем и выражается формулой

Внося выражение силы тока I под знак интеграла и интегрируя от 0 до ¥ (при t®¥I®0), получим

Подставим пределы интегрирования и определим количество электричества, протекающее через обмотку:

(2)

2-й способ. Подставив в формулу (1) вместо силы тока I выраже­ние ее через ЭДС индукции , и сопротивление R соленоида, т. е.

Но связана со скоростью изменения потокосцепления Y по закону Фарадея —Максвелла: =- dY /d t, тогда

Интегрируя, получаем

(3)

Потокосцепление Y пропорционально силе тока в соленоиде. Следовательно, Y1= LI 0; Y2=0, так как Y2 соответствует тому мо­менту, когда ток в цепи обратится в нуль. Подставив выражения Y1 и Y2 в формулу (3), получим Q=Y1/ R, или

что совпадает с формулой (2). Для определения заряда, протекающего через обмотку соленои­да, следует найти индуктивность L соленоида и сопротивление R обмотки соленоида, которые выражаются формулами

где m0 — магнитная постоянная; N — число витков; l 1 длина соленоида; S 1 — площадь сечения соленоида; r — удельное сопро­тивление провода; l —длина провода; S —площадь сечения про­вода; d— диаметр провода; d 1—диаметр соленоида.

Подставив найденные выражения L и R в формулу (2), получим

Заметим, что длина провода l может быть выражена через диа­метр d 1 соленоида соотношением l=pd 1 N, где N — число витков, тогда формуле (4) можно придать вид

Но l 1 /N есть диаметр провода, так как витки плотно прилегают друг к другу. Следовательно,

Произведя вычисления по формуле (5), получим

Q =363 мкКл.

 

Пример 23. На стержень из немагнитного материала длиной l =50 см намотан в один слой провод так, что на каждый сантиметр длины стержня приходится 20 витков. Определить энергию W маг­нитного поля внутри соленоида, если сила тока I в обмотке равна 0,5 А. Площадь S сечения стержня равна 2 см2.

Решение. Энергия магнитного поля соленоида с индуктив­ностью L, по обмотке которого течет ток I, выражается формулой

. (1)

Индуктивность соленоида в случае немагнитного сердечника за­висит только от числа витков на единицу длины и от объема V сер­дечника: L=μ0n2V, где μ0 —магнитная постоянная. Подставив вы­ражение индуктивности L в формулу (1), получим . Учтя, что V=lS, запишем

. (2)

Сделав вычисления по формуле (2), найдем

W= 126 мкДж.

 

Пример 24. По обмотке длинного соленоида со стальным сердеч­ником течет ток I =2А. Определить объемную плотность ω энергии магнитного поля в сердечнике, если число п витков на каждом сан­тиметре длины соленоида равно 7 см-1.

Решение. Объемная плотность энергии магнитного поля оп­ределяется по формуле

. (1)

Напряженность Н магнитного поля найдем по формуле H=nl. Подставив сюда значения п (п =7 см-1=700 м-1) и I, найдем

H =1400 А/м.

Магнитную индукцию В определим по графику (рис. 18) зависимости В от Н. Находим, что напряженности H =1400 А/м со­ответствует магнитная индукция B =1,2 Тл.

Произведя вычисление по формуле (1), найдем объемную плот­ность энергии:

ω =840 Дж/м3.

 

Пример 25. На железный сердечник длиной l =20 см малого се­чения (d< l) намотано N =200 витков. Определить магнитную прони­цаемость μ железа при силе тока I =0,4 А.

Решение. Магнитная проницаемость μ связана с магнитной индукцией В и напряженностью Н магнитного поля соотношением

B= μ0μH. (1)

Эта формула не выражает линейной зависимости В от Н, так как μ является функцией Н. Поэтому для определения магнитной прони­цаемости обычно пользуются графиком зависимости В(Н) (см. рис. 24.1). Из формулы (1) выразим магнитную проницаемость:

μ =B/(μ0H).

Напряженность Н магнитного поля вычислим по формуле (ка­тушку с малым сечением можно принять за соленоид) Н=п1, где п — число витков, приходящихся на отрезок катушки длиной 1 м. Выразив в этой формуле п через число N витков катушки и ее дли­ну l, получим

H=(N/l)I.

Подставив сюда значения N, l и I и произведя вычисления, най­дем

H=400 А/м.

По графику находим, что напряженности Н=400 А/м соответст­вует магнитная индукция B =1,05 Тл. Подставив найденные значе­ния В и Н, а также значение μ0 в формулу (2), вычислим магнитную проницаемость:

μ =2,09 ∙103.

 

Пример 26. Колебательный контур, состоящий из воздушного кон­денсатора с двумя пластинами площадью S =100 см2 каждая и катушки с индуктивностью L =l мкГн, резонирует на волну длиной λ=10 м. Определить расстояние d между пластинами конденсатора.

Решение. Расстояние между пластинами конденсатора мож­но найти из формулы электроемкости плоского конденсатора С=ε0εS/d, где ε — диэлектрическая проницаемость среды, заполняю­щей конденсатор, откуда

d=ε0εS/C (1)

Из формулы Томсона, определяющей период колебаний в элек­трическом контуре: , находим электроемкость

. (2)

Неизвестный в условии задачи период колебаний можно опреде­лить, зная длину волны λ, на которую резонирует контур. Из соот­ношения λ =сТ имеем

Т= λ /с.

Подставив выражения периода Т в формулу (2), а затем электро­емкости С в формулу (1), получим

.

Произведя вычисления, найдем d =3,14 мм.

Пример 27. Колебательный контур состоит из катушки с индук­тивностью L= 1,2 мГн и конденсатора переменной электроемкости от C1 =12 пФ до С2 =80 пФ. Определить диапазон длин электромаг­нитных волн, которые могут вызывать резонанс в этом контуре. Активное сопротивление контура принять равным нулю.

Решение. Длина λ электромагнитной волны, которая может вызвать резонанс в колебательном контуре, связана с периодом Т колебаний контура соотношением

λ =сТ. (1)

Период колебаний, в свою очередь, связан с индуктивностью L катушки и электроемкостью С конденсатора колебательного конту­ра соотношением (формула Томсона) . Следовательно,

. (2)

Согласно условию задачи, индуктивность контура неизменна, а электроемкость контура может изменяться в пределах от C1 до C2. Этим значениям электроемкости соответствуют длины волн λ1 и λ2,, определяющие диапазон длин волн, которые могут вызвать резо­нанс. После вычислений по формуле (2) получим:

λ1 =226м; λ2 =585 м.

 

Таблица вариантов




Поделиться с друзьями:


Дата добавления: 2015-03-31; Просмотров: 1607; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.054 сек.