Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сетевые компоненты САУ [10]




Архитектура открытых информационных систем. Современная тенденция развития информационных систем, в составе которых или ресурсы которых могут использовать САУ, заключается в том, что структура системы должна удовлетворять следующим требованиям, обеспечивающим ее живучесть, способность к развитию и совершенствованию:

- система должна обладать открытой архитектурой;

- система должна быть распределённой.

Только с развитием микропроцессорной техники и сетевых технологий стало возможно и экономически оправданно строить системы автоматики, действительно удовлетворяющие этим требованиям. Стало целесообразным выделять в общей структуре системы отдельные локальные задачи, решение которых поручать локальным контроллерам. Сеть же позволяет контроллерам в качестве аргументов для вычисления управляющего вектора использовать переменные других контроллеров, обеспечивая связанность системы управления в целом. Такая архитектура существенно увеличивает производительность, надежность и масштабируемость систем. Международная организация по стандартизации (ISO) в 1984 г. сформулировала модель взаимодействия открытых систем (OSI), выделив семь уровней такого взаимодействия. Следование этой модели способно организовать и процесс создания системы в целом, причём важным фактором является и то, что снижаются затраты на создание стандартизованного программного обеспечения, что повышает надёжность всей системы.

Эталонная модель взаимодействия открытых систем декларирует не только взаимодействие, но и архитектуру таких систем. Всякая открытая система является иерархически построенной, и внутренняя архитектура системы подобна глобальной архитектуре, в которую входит множество подсистем. Это означает, что программное обеспечение для систем любого уровня создаётся на общих принципах и является достаточно универсальным. Предполагается, что непосредственная связь между физически различными системами или подсистемами осуществляется на физическом уровне. В идеальном случае каждый из уровней должен взаимодействовать непосредственно лишь с двумя прилежащими к нему уровнями.

Более подробно уровни модели взаимодействия открытых систем (снизу вверх) означают следующее:

1. Физический уровень (нижний). Отвечает за физическую среду передачи: кабели, разъемы, согласование линий связи, электрическое преобразование сигналов.

2. Канальный уровень. На этом уровне основная задача - логическое управление линией передачи, управление доступом к сети, обнаружение ошибок передачи и их исправления путём повторной посылки пакетов.

3. Сетевой уровень. Отвечает за адресацию пакетов данных, связывает физические сетевые адреса и логические имена, осуществляет выбор маршрута доставки данных.

4. Транспортный уровень. Здесь осуществляется создание пакетов данных и гарантированная доставка этих пакетов. При необходимости используются процедуры восстановления потерянных данных.

5. Сеансовый уровень. Сеанс связи означает, что между абонентами сети установлено логическое соединение, определены логические имена, контролируются права доступа.

6. Представительский уровень. На этом уровне происходит преобразование рабочей информации в логическую и физическую форму, наиболее пригодную для дальнейшей передачи в сети (сжатие, шифрование, преобразование форматов данных и пр.).

7. Прикладной уровень (уровень приложений). Уровень программ пользователя. Верхний уровень, непосредственно взаимодействующий с пользователем.

Структура уровней такова, что замена аппаратной части сказывается лишь на уровнях 1 и 2, вышестоящие уровни этой замены не должны заметить.

Локальные управляющие вычислительные сети. Для передачи информации в системах автоматики всё шире используются не традиционные каналы связи (многожильные кабели, телефонные каналы и т.п.), а локальные сети. Существенная разница при этом заключается не столько в виде физической среды передачи информации, сколько в гораздо более сложных и эффективных способах кодирования и сжатия информации, представляемой в универсальной форме. К сожалению, современные решения для построения локальных и глобальных информационных сетей не всегда оказываются приемлемыми в силу не гарантированного времени доставки информации, что малопригодно для систем реального времени, и сложности аппаратных решений, особенно для скоростных сетей.

В системах автоматики часто используют сегменты обычных локальных и глобальных сетей. Большинство локальных сетей имеет выход в глобальную сеть, но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телефонные разговоры, электронные письма и т.д. Задача передачи полноцветных динамических изображений предъявляет самые высокие требования к быстродействию сети. Чаще всего локальные сети используются для совместного использования таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это лишь часть возможностей локальных сетей. Например, они позволяют осуществлять обмен информацией между компьютерами разных типов. Абонентами (узлами) сети могут быть не только компьютеры, но и другие устройства (принтеры, плоттеры, сканеры). Локальные сети дают возможность организовать систему параллельных вычислений на всех компьютерах сети, что позволяет многократно ускорить решение сложных математических задач. С их помощью можно также управлять работой сложной технологической системы или исследовательской установки с нескольких компьютеров одновременно.

Упомянем о таких важнейших понятиях теории сетей, как сервер и клиент. Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует ресурсы других абонентов. Серверов в сети может быть несколько, и не обязательно сервер - самый мощный компьютер. Выделенный сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может заниматься помимо обслуживания сети и другими задачами. Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает. Компьютер-клиент часто называют рабочей станцией. В принципе, каждый компьютер может быть одновременно как клиентом, так и сервером. Под сервером и клиентом часто понимают не сами компьютеры, а работающие на них программные приложения.

Топологии локальных сетей. Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети понимается физическое расположение компьютеров сети друг относительно друга и способ их соединения линиями связи. Понятие топологии относится, прежде всего, к локальным сетям. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по своему собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, методы управления обменом, надежность работы, возможности расширения сети. На разных уровнях сетевой архитектуры различают также:

- Физическую топологию, схему расположения компьютеров и прокладки кабелей.

- Логическую топологию, структуру логических связей и вытекающих из них способов распространения сигналов.

- Информационную топологию, пути распространения информации по сети.

Существует три базовых топологии сети:

• шина (bus), при которой все компьютеры параллельно подключаются к одной линии связи и информация от каждого компьютера одновременно передается всем остальным компьютерам.

• звезда (star), при которой к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует свою отдельную линию связи.

• кольцо (ring), при которой каждый компьютер передает информацию всегда только одному компьютеру, следующему в цепочке, а получает информацию только от предыдущего в цепочке компьютера, и эта цепочка замкнута в «кольцо».

На практике используют и любые комбинации базовых топологий, но большинство сетей ориентированы именно на эти три.

Топология «шина» (или «общая шина») предполагает идентичность сетевого оборудования компьютеров и равноправие всех абонентов. При таком соединении линия связи единственная и в шине реализуется режим полудуплексного (half duplex) обмена в обоих направлениях, но по очереди. Какой-либо центральный абонент, через которого передается вся информация, отсутствует, что увеличивает ее надежность (при отказе центра перестает функционировать вся система). Добавление новых абонентов в шину возможно даже во время работы сети.

Так как разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого абонента, аппаратура сетевого адаптера при топологии «шина» получается сложнее, чем при других топологиях. Однако из-за широкого распространения сетей с топологией «шина» стоимость сетевого оборудования получается не слишком высокой. Шине не страшны отказы отдельных компьютеров. На концах шины необходимо предусматривать включение согласующих устройств - терминаторов, для исключения отражений от концов линии. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. Отказ сетевого оборудования в шине трудно локализовать, так как все адаптеры включены параллельно. При прохождении по «шине» информационные сигналы ослабляются, что накладывает ограничения на суммарную длину линий связи. Каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования. Для увеличения длины сети с топологией «шина» используют сегментирование шины, с соединением сегментов через специальные восстановители сигналов - репитеры.

Топология «звезда» - это топология с явно выделенным центром, к которому подключаются все остальные абоненты. Весь обмен информацией идет исключительно через центральный компьютер, как правило, самый мощный в сети. Сетевое оборудование центра существенно более сложно, чем оборудование периферийных абонентов. Никакие конфликты в сети с топологией «звезда» в принципе невозможны. Выход из строя периферийного компьютера или кабеля его подключения не отражается на функционировании оставшейся части сети, но любой отказ центрального компьютера делает сеть неработоспособной.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. К каждому периферийному абоненту может подходить как один кабель (по которому идет передача в обоих направлениях), так и два кабеля (каждый из них передает в одном направлении), причем вторая ситуация встречается чаще. Проблема затухания сигналов в линии связи также решается проще, чем в «шине» (каждый приемник получает сигнал одного уровня).

Серьезный недостаток топологии «звезда» состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. Если в этих пределах подключение новых абонентов довольно просто, то при их превышении оно просто невозможно. Правда, иногда в звезде предусматривается возможность наращивания, то есть подключение вместо одного из периферийных абонентов еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Рассмотренная "звезда" носит название активной, или истинной, звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду. В центре сети с данной топологией помещается не компьютер, а концентратор, или хаб (hub), выполняющий ту же функцию, что и репитер. Он восстанавливает приходящие сигналы и пересылает их в другие линии связи. Хотя схема прокладки кабелей подобна истинной или активной звезде, фактически мы имеем дело с шинной топологией, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а центрального абонента не существует. Естественно, пассивная звезда получается дороже обычной шины, так как в этом случае обязательно требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды.

Большое достоинство звезды состоит в том, что все точки подключения собраны в одном месте, что позволяет легко контролировать работу сети, а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. Общим недостатком для всех топологий типа «звезда» является значительно больший, чем при других топологиях, расход кабеля.

Топология «кольцо» - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера. Четко выделенного центра в сети нет, все компьютеры могут быть одинаковыми. Однако часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Наличие управляющего абонента снижает надежность сети (выход его из строя парализует обмен).

Подключение новых абонентов в «кольцо» обычно безболезненно, хотя и требует остановки работы всей сети на время подключения. Максимальное количество абонентов в кольце может быть до тысячи и больше. Кольцевая топология обычно является самой устойчивой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками передаваемой по сети информации. В ней, как правило, нет конфликтов (в отличие от шины), и отсутствует центральный абонент (в отличие от звезды). Так как сигнал в кольце проходит через все компьютеры, выход из строя хотя бы одного из них или его сетевого оборудования, а равно любой обрыв или короткое замыкание в любом из кабелей кольца, нарушает работу всей сети. В этой топологии обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве. В то же время крупное преимущество кольца состоит в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всей сети в целом (порой до нескольких десятков километров).

Иногда топология «кольцо» выполняется на основе двух кольцевых линий связи, передающих информацию в противоположных направлениях, что позволяет увеличить скорость передачи информации, а при повреждении одного из кабелей работать с одним кабелем.

литература

1. Мирошник И.В. Теория автоматического управления. Линейные системы: Учебное пособие для вузов. - СПб.: Питер, 2005. - 336 с.

10. Туманов М.П. Технические средства автоматизации и управления: Учебное пособие. – М.: МГИЭМ, 2005, 71 с. URL: http://rs16tl.rapidshare.com/files/21651582/2889232/ Tehnicheskie_sredstva_avtomatizatsii_i_upravleniya.rar

11. Михайлов В.С. Теория управления. – К.: Выща школа, 1988.

12. Зайцев Г.Ф. Теория автоматического управления и регулирования. – К.: Выща школа, 1989.

 

Главный сайт автора ~ Лекции по ОТУ

О замеченных опечатках, ошибках и предложениях по дополнению: [email protected].




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 515; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.