Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод Зейделя




 

В методі Зейделя уточнене значення х1 зразу ж використовується для обчислення х2, далі нові значення х1 і х2 використовуються для обчислення х3 і т. д.

Це невелике удосконалення ітераційної процедури дозволяє суттєво збільшити швидкість збіжності.

Будь-яке (k +1)-е наближення в методі Зейделя будується за наступними формулами:

 

(3.17)

 

де k = 0, 1, 2, …, n.

Ітерації закінчуються, коли із заданою точністю одержано однакові значення невідомих у двох ітераціях підряд.

Умови збіжності ітераційного процесу подібні умовам для простої ітерації, тобто ітераційний процес і його збіжність залежать від величини елементів матриці наступним чином: якщо найбільша сума модулів елементів рядків або найбільша сума модулів елементів стовпців менше одиниці, то процес ітерації для даної системи збігається до єдиного розв'язку незалежно від вибору початкового наближення.

Отже, умови збіжності можна записати так:

 

(i = 1, 2, …, n) або (j = 1, 2, …, n).

 

Як і в методі простої ітерації треба привести СЛАР до виду, який придатний для ітерацій. Для виконання умов збіжності ітераційного процесу достатньо, щоб значення елементів матриці при були невеликими з абсолютної величини. Це рівносильно тому, що якщо для СЛАР модулі діагональних коефіцієнтів кожного рівняння системи більше суми модулів всіх інших коефіцієнтів (без врахування вільних членів), то ітераційні процеси для цієї системи збігаються.

Окремо, на прикладі показується, як виконується еквівалентне перетворення вихідної СЛАР і отримується нормалізована система в загальному випадку.

Вихідна СЛАР:

 

 

Виконуються наступні дії:

а) в заданій системі виділяються рівняння з коефіцієнтами, модулі яких більші за суму модулів інших коефіцієнтів рівняння. Кожне виділене рівняння записується в таку строку нової СЛАР, щоб найбільший за модулем коефіцієнт був діагональним. В рівнянні (Q) виконується таке: . Рівняння (Q) приймається за третє рівняння нової системи.

б) інші рівняння нової еквівалентної системи одержуються шляхом складання лінійних незалежних між собою комбінацій. Так, за перше рівняння можна прийняти таку лінійну комбінацію (P)+(R), тоді:

 

.

За друге рівняння нової системи – таку комбінацію: (2Q)+(R)-(P), тобто

 

.

В результаті одержано перетворену СЛАР яка еквівалентна вихідній і задовольняє умовам збіжності ітераційного процесу:

 

Для перевірки цього твердження еквівалентна система приводиться до нормального виду і перевіряється, чи задовольняється хоч одна з умов збіжності.

При цьому використовується такий спосіб: записуються коефіцієнти при невідомих x1, x2, x3 у відповідних рівняннях системи як m ·x, де m – число, що близьке до коефіцієнта при відповідному невідомому і на яке легко розділити коефіцієнти при невідомих і вільні члени.

Наприклад, приймається m = 10. Тоді система, що приводиться до нормального виду, перепишеться так:

або

Матриця і вектор приймають вид

, .

Суми модулів елементів рядків матриці :

0,24 + 0,05 + 0,24 = 0,53;

0,22 + 0,09 + 0,44 = 0,75;

0,18 + 0,25 + 0,54 = 0,97.

Більша із сум 0,97 < 1. Отже, одна з умов збіжності ітераційного процесу виконується. І хоч друга умова не виконується (більша сума модулів елементів стовпців 0,24 + 0,44 + 0,54 = 1,22 > 1) процес ітерації для системи, що розглядається, збігається до єдиного розв‘язку.

Приклад 2. Розрахувати струми в гілках електричного кола (рис. 3.1) методом Зейделя.

Розв'язується СЛАР (3.13) з прикладу 1.

 

 

Після еквівалентних перетворювань система має вид (3.14)

 

 

Надалі еквівалентна СЛАР приводиться до нормального виду, що придатний до проведення ітерацій, за допомогою коефіцієнта m= 20, аналогічно попередньому прикладу еквівалентних перетворювань, але з урахуванням матричної форми запису системи рівнянь.

 

 

(3.18)

 

З (3.18) видно, що

 

,

і умова збіжності ітераційного процесу виконується по рядках при .

Нульове наближення, що дорівнює з (3.17):

 

Задається абсолютна похибка розрахунку

 

Перше наближення згідно ітераційних формул методу (3.17):

 

Друге наближення:

 

Третє наближення:

 

Аналогічно виконуються кроки наступних ітерацій:

 

 

Перевірка умови закінчення ітераційного процесу після 9-го кроку:

 

 

За дев'ять кроків ітераційний процес закінчився з заданою точністю.

 

Струм в гілках схеми (рис. 1.1) за методом Зейделя становить:

 

Перевірка у вузлі „а” (рис. 1.1) за першим законом Кірхгофа виконується з точністю до |(0,249 + 1,566) – 1,832| = 0,017 А.

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 992; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.