Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение витаминов в продуктах питания




Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы).

Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие.

1.Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием).

2.Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др.

3.В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами.

4.Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования.

5.Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина. Для этого используют различные приемы: осаждение мешающих анализу веществ, методы адсорбционной, ионобменной или распределительной хроматографии, избирательную экстракцию определяемого компонента и др.

В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа.

Физико-химические методы исследования витаминов. Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы.

Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения. При определении витамина С в пищевых продуктах используют различные методы: колориметрические, флуоресцентные, методы объемного анализа, основанные на окислительно-восстановительных свойствах АК, и ВЭЖХ.

Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси.

1. Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску. Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение.

Нитроформа Ацидоформа

2. В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм.

о-Фенилендиамин ДАК Хиноксалин

Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование.

Методы, основанные на окислительно-восстановительных свойствах АК.

3. Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование. В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм.

В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК.

2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6).

4. Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3+) до Fe(2+) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм.

5. Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм.

6. Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции.

Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения.

Определение тиамина (В 1 ). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа. С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире).

1. Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3+) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)). При использовании этого метода возникают трудности, связанные с тем, что в ряде объектов присутствуют флуоресцирующие соединения. Их удаляют очисткой на колонках с ионообменными смолами. При анализе мяса, молока, картофеля, пшеничного хлеба и некоторых овощей очистка не требуется.

 

Тиамин Тиохром

 

2. Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии.

3. Для одновременного определения тиамина и рибофлавина используют ВЭЖХ.

Определение рибофлавина (В 2 ). В пищевых продуктах рибофлавин присутствует главным образом в виде фосфорных эфиров, связанных с белками, и, следовательно, не может быть определен без предварительного протеолитического расщепления. Свободный рибофлавин в значительном количестве содержится в молоке.

При определении рибофлавина наибольшее распространение получили микробиологический и физико-химический (флуоресцентный) методы анализа. Микробиологический метод специфичен, высоко чувствителен и точен; применим ко всем продуктам, но длителен и требует специальных условий.

Физико-химический метод разработан в двух вариантах, которые отличаются способом оценки флуоресцирующих веществ:

· вариант прямой флуоресценции (определение интенсивности флуоресценции рибофлавина) и

· люмифлавиновый вариант.

1. Свободный рибофлавин и его фосфорные эфиры обладают характерной желто-зеленой флуоресценцией при длине волны возбуждающего света 440–500 нм. На этом свойстве основан наиболее широко используемый флуоресцентный метод определения рибофлавина. Рибофлавин и его эфиры дают очень сходные спектры флуоресценции с максимумом при 530 нм. Положение максимума не зависит от рН. Интенсивность флуоресценции значительно зависит от рН и от растворителя (по-разному для рибофлавина и его эфиров), поэтому предварительно разрушают эфиры и анализируют свободный рибофлавин. Для этого используют гидролиз с соляной и трихлоруксусной кислотами, автоклавирование, обработку ферментными препаратами.

Интенсивность желто-зеленой флуоресценции рибофлавина в УФ-свете зависит не только от его концентрации, но и от значения рН раствора. Максимальная интенсивность достигается при рН=6-7. Однако измерение проводят при рН от 3 до 5, так как в этом интервале интенсивность флуоресценции определяется только концентрацией рибофлавина и не зависит от других факторов – значения рН, концентрации солей, железа, органических примесей и др.

Рибофлафин легко разрушается на свету, определение проводят в защищенном от света месте и при рН не выше 7. Следует отметить, что метод прямой флуоресценции не применим к продуктам с низким содержанием рибофлавина.

2. Люмифлавиновый вариант основан на использовании свойства рибофлавина при облучении в щелочной среде, переходить в люмифлавин, интенсивность флуоресценции которого измеряют после извлечения его хлороформом (голубая флуоресценция, 460–470 нм). Поскольку при определенных условиях в люмифлавин переходит 60–70% общего рибофлавина, при проведении анализа необходимо соблюдать постоянные условия облучения, одинаковые для испытуемого и стандартного раствора.

Рибофлавин Люмифлавин

Определение витамина В 6. Для определения витамина могут быть использованы следующие методы:

1. Прямая спектрофотометрия. Пиридоксина гидрохлорид характеризуется собственным поглощением при 292 нм (e = 4,4·103) при рН = 5.

2. Метод Кьельдаля. Определение осуществляется по аммиаку, образующемуся при окислении витамина.

3. Фотометрический метод, основанный на реакции с 2,6-дихлорхинонхлоримином (реактив Гиббса) при рН 8–10, в результате которой образуются индофенолы, имеющие синюю окраску. Индофенолы экстрагируют метил-этилкетоном и измеряют оптическую плотность экстракта при 660–690 нм (реакцию Гиббса дают фенолы со свободным пара-положением).

Индофенол

4. Флуоресцентный метод, основанный на том, что при облучении пиридоксина и пиридоксамина наблюдается синяя, а пиридоксаля – голубая флуоресценция.

Определение витамина В 9. Определение фолатов в пищевых продуктах в тканях и жидкостях организма представляет значительные трудности, т.к. в этих объектах они обычно присутствуют в связанной форме (в виде полиглютаматов); кроме того, большинство форм чувствительно к воздействию кислорода воздуха, света и температуры. Для предохранения фолатов от гидролиза рекомендуется вести гидролиз в присутствии аскорбиновой кислоты.

В пищевых продуктах фолаты могут быть определены физическими, химическими и микробиологическими методами. Колориметрический метод основан на расщеплении птероилглутаминовой кислоты с образованием п-аминобензойной кислоты и родственных ей веществ и дальнейшем превращении их в окрашенные соединения. Однако из-за недостаточной специфичности этот метод применяется в основном для анализа фармацевтических препаратов.

Для разделения, очистки и идентификации фолатов разработаны также методы хроматографии на колонках, бумаге и в тонком слое адсорбента.

Определение витамина РР. В пищевых продуктах никотиновая кислота и ее амид находятся как в свободной, так и в связанной форме, входя в состав коферментов. Химические и микробиологические методы количественного определения ниацина предполагают наиболее полное выделение и превращение его связанных форм, входящих в состав сложного органического вещества клеток, в свободную никотиновую кислоту. Связанные формы ниацина освобождают воздействием растворов кислот или гидрооксида кальция при нагревании. Гидролиз с 1 М раствором серной кислоты в автоклаве в течение 30 минут при давлении 0,1 МПа приводит к полному освобождению связанных форм ниацина и превращению никотинамида в никотиновую кислоту. Установлено, что этот способ обработки дает менее окрашенные гидролизаты и может быть использован при анализе мясных и рыбных продуктов. Гидролиз с гидрооксидом кальция предпочтителен при определении ниацина в муке, крупах, хлебобулочных изделиях, сырах, пищевых концентратах, овощах, ягодах и фруктах. Ca(OH)2 образует с сахарами и полисахаридами, пептидами и гликопептидами соединения, почти полностью нерастворимые в охлажденных растворах. В результате гидролизат, полученый при обработке Ca(OH)2, содержит меньше веществ, мешающих химическому определению, чем кислотный гидролизат.

1. В основе химического метода определения ниацина лежит реакция Кенига, протекающая в две стадии. Первая стадия – реакция взаимодействия пиридинового кольца никотиновой кислоты с бромцианом, вторая – образование окрашенного производного глутаконового альдегида в результате взаимодействия с ароматическими аминами. (Сразу после добавления к никотиновой кислоте бромистого циана появляется желтая окраска глутаконового альдегида. В результате взаимодействия его с ароматическими аминами, вводимыми в реакционную смесь, образуются дианилы, которые интенсивно окрашены в желтый, оранжевый или красный цвет, в зависимости от амина (бензидин – красный, сульфаниловая кислота – желтый). Реакцию Кенига применяют для фотометрического определения пиридина и его производных со свободным a-положением. Недостатком метода является его длительность, так как скорость реакций мала.




Поделиться с друзьями:


Дата добавления: 2015-05-29; Просмотров: 6155; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.