Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Получение лимонной кислоты 4 страница




Лизин образуют многие микроорганизмы: бактерии, актиномицеты, сине-зеленые водоросли, некоторые виды микроскопических грибов. В нашей стране в качестве продуцентов лизина используют бактерии родов Corinebacterium (C. glutamicum), Micrococcus, Brevibacterium. Питательной средой является меласса или уксусная кислота.

Триптофан образуют микроорганизмы бактериального и грибного происхождения: Aerobacter, Bacillus, Escherichia (E. coli), Sacсharomyces (S. сerevisiae), Candida и другие. Наиболее активные продуценты L-триптофана – представители рода Micrococcus, Candida utilis, Bacillus subtilis.

Основными потребителями аминокислот являются сельское хозяйство и пищевая промышленность. Аминокислоты, чаще всего лизин, используют в качестве обогатителя кормов и пищевых продуктов растительного происхождения для повышения их питательной ценности и для сбалансирования пищи по незаменимым аминокислотам. Использование 1 т лизина в комбикормовой промышленности позволяет экономить 40-50 т фуражного зерна.

Некоторые аминокислоты используют в качестве приправ, так как они обладают определенными вкусовыми свойствами и могут сообщать продукту приятные аромат и вкус. Большое распространение имеет глутаминовая кислота и ее натриевая соль (глутамат натрия), которая является эффективным усилителем вкуса мясных и овощных блюд. Данную аминокислоту добавляют во многие продукты при консервировании, замораживании и длительном хранении. Растет спрос на глицин и аланин, которые также применяют в качестве приправ.

Многие аминокислоты обладают оригинальным вкусом и участвуют в образовании вкусовых особенностей пищевых продуктов. Например, аспарагиновая и глутаминовая кислоты, кислые на вкус, в нейтральных растворах имеют очень приятный оригинальный вкус, глицин обладает характерным вкусом «освежающей» сладости, которая по интенсивности близка к сахарозе.

Особый интерес представляет подсластитель аспартам, молекулу которого образуют 2 аминокислоты – фенилаланин и аспарагиновая кислота. Эти аминокислоты синтезируются микробиологическим путем, а аспартам из этих мономеров – с помощью ферментов. Сладость аспартама в 200 раз превышает сладость сахара.

Многие аминокислоты: лизин, аланин, пролин, валин и другие - могут снимать неприятные запахи и используются в качестве дезодорантов пищевых продуктов.

Для улучшения органолептических показателей мясных продуктов, придания им специфического приятного вкуса и аромата используют цистин, лизин, гистидин. Цистеин и цистин с глутаматом натрия создают имитацию запаха и вкуса мяса, что используется при приготовлении приправ. Цистеин, кроме того, используется для создания пористой структуры хлеба. Добавка к порошковому молоку гистидина и триптофана снимает неприятный «окисленный» привкус.

При температуре 100-120 °С и сильнощелочной реакции некоторые аминокислоты взаимодействуют с сахарами и образуют пищевые красители, которые обладают антиокислительным действием.

Таким образом, самые различные аминокислоты находят широкое применение во многих отраслях пищевой промышленности, повышая питательную ценность пищевых продуктов, участвуя в улучшении их органолептических показателей и повышая их стабильность при длительном хранении.

 

4.3. Получение липидов с помощью микроорганизмов

 

С помощью микроорганизмов можно получать липиды. Продуцируемые микроорганизмами липиды накапливаются внутри клетки в виде запасных гранул. Требования при отборе продуцентов липидов те же, что и для продуцентов белка (раздел 6.1.), только вместо белка в клетке должны накапливаться липиды. Кроме того, ряд продуцентов в отличие от продуцентов белка (в частности, дрожжей) требуют асептических условий при выращивании.

Производство липидов с помощью микроорганизмов возможно по двум направлениям: специализированное производство, основанное на направленном биосинтезе липидов микробной клеткой, и получение отхода производства в виде микробного жира при производстве кормовых дрожжей.

В производстве, где главным, целевым продуктом являются микробные липиды, в качестве продуцентов используют дрожжи родов Cryptococcus, Rhodotorula, Lypomyces, Candida. Среди этой группы дрожжей наибольшей продуктивностью обладают следующие виды: Cryptococcus terricolus, Rhodotorula gracilis, R. glutinis, Lypomyces starkeyi, L. lipoferus и др. Микроорганизмы выращиваются при минимальном азотистом питании. В этом случае они накапливают значительные количества (от 35 до 55 % от сухой массы клетки) липидов, состав которых зависит от используемого источника углерода. В липидную фракцию входят фосфолипиды, стерины, свободные жирные кислоты, моно-, ди- и триглицериды, стериновые эфиры и воски. Липиды извлекают экстракцией, а оставшуюся биомассу используют как белковую добавку в корма животных, однако содержание белка в ней в 1,5-2,0 раза меньше, чем в обычных кормовых дрожжах.

Источником получения липидов может быть биомасса дрожжей (в основном рода Candida), накапливаемая при производстве белковых веществ, но содержащая повышенное количество жиров, которые извлекают экстракцией растворителями.

При выращивании кормовых дрожжей на средах с повышенными концентрациями парафинов, на дизельном топливе в биомассе дрожжей накапливается значительное количество липидов, которые являются нежелательным компонентом в готовом продукте, так как они вызывают его прогоркание при хранении. Поэтому липиды из кормовых дрожжей экстрагируют, отработанные дрожжи высушивают, а жиры освобождают от растворителя и направляют на дальнейшую переработку.

В настоящее время значительное количество растительных и животных жиров расходуется на технические нужды. Замена пищевых жиров микробными дает заметный экономический эффект.

 

4.4. Получение витаминов и их применение

 

С помощью микробного синтеза в настоящее время получают такие витамины, как некоторые витамины группы В: В12, В2, каротиноиды, витамин D и другие.

Витамин В12(цианкобаламин). Особенность витамина В12 по сравнению с другими витаминами группы В определяется двумя причинами: во-первых, в природе он синтезируется только микроорганизмами, во-вторых, молекула витамина состоит из 2-х частей: кобальтосодержащей и нуклеотидной.

В тканях животных концентрация витамина очень низкая (в печени быка 1 мг/ кг) для того, чтобы использовать этот источник для промышленных целей. Химический синтез очень сложен.

Синтезировать витамин В12 способны уксуснокислые бактерии, грибы и пропионовокислые бактерии. Наибольшее промышленное значение имеют Propionibacterium и Pseudomonas (P. denitrificans).

Концентрат витамина В12 предназначен для обогащения кормов животных. Он представляет собой однородный порошок коричневого цвета, кисловатый на вкус, имеет характерный запах. Для обогащения кисломолочных продуктов витамином В12 используют пропионовокислые бактерии как в чистом виде, так и в виде концентрата, приготовленного на молочной сыворотке.

Витамин В2 (рибофлавин) можно в небольших количествах выделять из природного сырья. В наибольшем количестве он содержится в моркови и печени трески.

Из 1 т моркови получают 1 г витамина, из 1 т печени – 6 г.

Рибофлавин впервые был выделен в кристаллическом виде в 1933 г. Продуцентами данного витамина являются дрожжи, мицелиальные грибы и бактерии. Наиболее активными продуцентами витамина В2 являются дрожжеподобные грибы рода Eremothecium (эремофекиум), входящие в класс аскомицетов. Культивирование проводят глубинным способом при хорошей аэрации. Максимальное накопление витамина происходит вместе с максимумом накопления биомассы на 2-е сутки, причем синтез рибофлавина начинается лишь после фазы интенсивной ассимиляции сахара.

Витамином В2 обогащают некоторые сорта белого хлеба, его используют для окраски пищевых продуктов в оранжево-желтый цвет.

Каротиноиды – это предшественники витамина А, среди которых наиболее активен b-каротин. В организме человека каротиноиды не синтезируются, поэтому должны поступать извне. В печени каротин превращается в витамин А.

Продуцентами каротиноидов могут быть грибы и дрожжи. В промышленности b-каротин чаще всего получают с помощью микроскопического гриба рода Blakeslea (блакеслеа). Культивирование проводят и поверхностным, и глубинным способами на питательных средах сложного состава. Во время ферментации среду интенсивно аэрируют. Образование каротиноидов в культуре микроорганизмов не идет параллельно с образованием биомассы. Интенсивный синтез каротиноидов начинается, когда в среде использован весь азот, а рост культуры уменьшается. В качестве стимуляторов в питательные среды добавляют экстракты цитрусовых и дрожжей.

b-каротин используют при изготовлении пищевых продуктов как краситель. Его применяют при изготовлении колбас с целью замены нитрита натрия и обеспечения высокой интенсивности и устойчивости цвета. Используют при производстве леденцов, пищевых паст, кексов и других кондитерских изделий. Во многих странах b-каротин применяют для подкрашивания сливочного масла. Нагревают до 30 °С, добавляют b-каротин, который при такой температуре хорошо растворяется в масле. В Италии каротиноиды используют в производстве макаронных изделий.

b-каротин применяется для стабилизации цвета мяса охлажденного и замороженного в тушах. С этой целью раствор b-каротина наносят на поверхность мяса.

Кроме того, b-каротин обладает антиокислительными свойствами, которые используются для продления срока хранения продукта.

Таким образом, витамины, синтезированные микроорганизмами, используют не только для повышения пищевой ценности продуктов питания, но также в качестве антиоксидантов, красителей и стабилизаторов цвета.

 

Вопросы для самопроверки

1. Какие основные этапы включает схема получения лимонной кислоты?

2. Механизм синтеза лимонной кислоты.

3. Продуценты и условия сверхсинтеза лимонной кислоты.

4. Какие микроорганизмы применяются для получения молочной и уксусной кислот?

5. Условия культивирования микроорганизмов при производстве молочной кислоты.

6. Состав питательных сред для промышленного производства уксусной кислоты.

7. Расскажите об использовании иммобилизованных клеток в производстве уксусной кислоты.

8. Применение органических кислот в пищевой промышленности.

9. В чем преимущества получения аминокислот с помощью микроорганизмов?

10. Какие аминокислоты получают путем микробного синтеза, и каковы их основные продуценты?

11. Применение аминокислот в пищевой промышленности.

12. Расскажите о способах производства липидов микробного происхождения.

13. Какие витамины получают с помощью микроорганизмов?

14. Применение витаминов в пищевой промышленности.

 


ТЕМА 5. ПОЛУЧЕНИЕ ФЕРМЕНТНЫХ ПРЕПАРАТОВ

И ИХ ПРИМЕНЕНИЕ В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ

 

5.1. Понятие ферменты и ферментные препараты. Характеристика

активности ферментных препаратов

 

Ферменты - это высокоактивные соединения белковой природы, являющиеся специфическими катализаторами реакций.

Ферменты катализируют миллионы химических превращений в клетках животных, растений, микроорганизмов и воздействуют на соответствующие субстраты вне клетки. Достоинством применения ферментов перед химическими катализаторами является то, что они действуют при нормальном давлении, при диапазоне температур от 20 до 70 °С, рН от 4 до 9, в большинстве случаев имеют высокую субстратную специфичность, что позволяет в сложной смеси биополимеров направленно воздействовать на определенные соединения.

При помощи ферментов получают ряд пищевых продуктов. Ферменты используют в пищевой, фармакологической, биохимической промышленностях и во многих областях деятельности человека.

Следует различать два понятия: ферменты и ферментные препараты. Ферменты находятся практически во всех живых объектах: растениях, животных и микроорганизмах. Ферментные препараты могут представлять собой смесь ферментов или фермент одного вида, иметь различную степень очистки, могут быть добавлены в сырье или продукт, или использоваться закрепленными на носителе (иммобилизованные ферменты). В качестве источника получения ферментных препаратов биотехнологическим способом используют ткани и органы растений, животных и микроорганизмы.

Производство ферментных препаратов является одним из перспективных направлений развития биотехнологии.

Характеристика активности ферментных препаратов

Ферменты являются соединениями белковой природы, поэтому в смеси с другими белками определить их количество практически невозможно. Наличие определенного фермента в данном препарате может быть установлено по результатам той реакции, которую катализирует фермент, то есть по количеству образовавшихся продуктов реакции или уменьшению исходного субстрата.

Активность ферментного препарата Е (по международной классификации) выражается в микромолях субстрата, прореагировавшего в присутствии 1 мл ферментного раствора или 1 г препарата в заданных условиях за 1 минуту. Число микромолей и будет равно числу стандартных единиц активности.

Необходимо придерживаться определенных условий при установлении активности фермента: вести определение при температуре 30 °С и определять активность по начальной скорости реакции, когда концентрация субстрата достаточна для насыщения фермента.

5.2. Получение ферментных препаратов

из сырья растительного происхождения

 

Для получения ферментных препаратов пригодны только некоторые растения или отдельные органы растений и животных, способные накапливать значительное количество ферментов. Источники некоторых ферментов приведены в табл. 5.1.

 

Таблица 5.1

 

Источники ферментов растительного происхождения

 

Ферменты Источник, из которого получают
Амилазы Ячмень
Протеазы:  
папаин Дынное дерево
фицин Фиговое дерево
бромелаин Ананас
Кислая фосфатаза Картофель
Пероксидаза Хрен
Уреаза Канавалия мечевидная

 

Из ферментов растительного происхождения наиболее широко в пищевой промышленности используют амилазы и папаин. Источником ферментов могут быть пророщенные зерна различных злаков. Условно ферментным препаратом можно считать и ячменный солод, в котором содержится до 1 % амилаз.

Растительная протеаза – папаин – содержится в плодах дынного дерева. Только в США ежегодно расходуют около 1 т папаина для обработки (размягчения) мяса. Папаин, а также протеазы фицин и бромелаин при контакте с мясом в течение 2 ч при комнатной температуре расщепляют белки соединительной ткани – коллаген и эластин.

Из растительного сырья получают также фосфатазы, пероксидазы, уреазы, гемицеллюлазы и другие ферменты.

 

 

5.3. Получение ферментных препаратов

из сырья животного происхождения

 

Органы и ткани животных (поджелудочная железа, слизистые оболочки желудков и тонких кишок свиней и т.п.), содержащие ферменты, на мясоперерабатывающих комбинатах консервируют и используют для получения ферментов. Из слизистой желудка свиней и крупного рогатого скота получают препарат пепсина. Из поджелудочной железы свиней получают панкреатин, смеси трипсина, химотрипсина, липаз и амилаз. Пепсин, трипсин и химотрипсин применяют для размягчения мяса, однако бόльший эффект получен при обработке мяса панкреатином. Из желудка (сычуга) молодых телят выделяют сычужный фермент (реннин), широко используемый в сыроделии. Сычужный фермент осуществляет процесс превращения жидкого молока в гель (сгусток), а кроме того участвует в протеолизе, происходящем в сыре при созревании. Некоторые наиболее известные ферменты животного происхождения, а также органы и ткани животных, из которых их получают, представлены в табл. 5.2.

 

Таблица 5.2

 

Источники ферментов животного происхождения

 

Ферменты Источник, из которого получают
Сычужный фермент Крупный рогатый скот – сычуг
Щелочная фосфатаза Крупный рогатый скот - кишечник
Лактатдегидрогеназа Крупный рогатый скот - сердце
Гиалуронидаза Крупный рогатый скот - семенники
Каталаза Крупный рогатый скот, свиньи - печень
Пепсин Свинья - желудок
Трипсин, химотрипсин, карбоксинпептидаза, панкреатин, эластаза Свинья – поджелучная железа
Фумараза и трансаминаза Свинья - сердце
Аминоацилаза Свинья - почки
Ацетилхолинэстераза Электрический угорь – мышечная ткань

5.4. Получение ферментных препаратов с помощью микроорганизмов.

Номенклатура микробных ферментных препаратов

 

По экономическим и технологическим соображениям получать ферменты с помощью микроорганизмов более выгодно, чем из растительных и животных источников. В специально созданных условиях микроорганизмы способны синтезировать огромное количество разнообразных ферментов. Они неприхотливы к составу питательной среды, легко переключаются с синтеза одного фермента на другой и имеют сравнительно короткий цикл роста (16-100 часов). Продуцентами ферментов могут быть различные микроорганизмы: бактерии, грибы, дрожжи, актиномицеты. Для промышленного получения ферментных препаратов используют как природные штаммы микроорганизмов, так и мутантные штаммы. Микроорганизмы могут синтезировать одновременно целый комплекс ферментов, но есть и такие, особенно среди мутантных штаммов, которые являются моноферментными и образуют в больших количествах только один фермент. Микробные клетки содержат или продуцируют более двух тысяч ферментов, катализирующих биохимические реакции, связанные с ростом, дыханием и образованием продуктов. Многие из этих ферментов могут быть легко выделены и проявляют свою активность независимо от того, находятся ли они внутри клетки или в культуральной жидкости.

Производство ферментных препаратов осуществляется и поверхностным, и глубинным способами. При поверхностном способе в качестве продуцентов используются грибы. Питательные среды при этом способе имеют твердую или рыхлую консистенцию. Основой почти всех сред являются увлажненные пшеничные отруби. Для придания среде рыхлой структуры и ее обогащения к пшеничным отрубям добавляются древесные опилки или солодовые ростки. Культивирование проводят в условиях аэрации.

Глубинный способ выращивания принципиальных отличий от поверхностного не имеет. Культивирование проводят в жидких средах, а продуцентами могут быть и бактерии.

При получении внеклеточных ферментов применяют питательные среды неопределенного состава. В таких средах в качестве источника органического углерода и азота, как правило, используют различные сорта крахмала (картофельный, кукурузный, рисовый), кукурузный экстракт, соевую муку, гидролизаты биомассы дрожжей. Однако такие питательные среды неприменимы при выделении внутриклеточных ферментов, так как биомасса в этом случае содержит нерастворимые компоненты, затрудняющие выделение и очистку целевого продукта.

Замена одного источника углерода на другой коренным образом меняет набор накапливаемых ферментов. Например, Aspergillus awamori на средах, содержащих крахмал, преимущественно образует амилазы, при замене крахмала на ксилан синтезирует ксиланазу, а если в качестве источника углерода применяют растительное масло, в культуральной жидкости накапливается липаза.

При получении ферментов высокой степени очистки целесообразно культивировать продуцент в питательной среде строго детерминированного (определенного) состава, что обеспечивает направленный биосинтез нужного фермента.

Ферментные препараты представляют собой жидкости (до 50 % сухих веществ), либо порошки. Часто они содержат не один, а целый комплекс ферментов. Выделение и очистка ферментов очень трудоемкий и дорогой процесс, поэтому в некоторых случаях ферментные препараты применяют неочищенными. Но в пищевой промышленности используют препараты высокой и даже предельной степени очистки. Чем выше очистка, тем выше активность препарата. В целом ряде случаев необходимо иметь ферментные препараты, стандартизованные по активности входящих в их состав ферментов. В этом случае используют различные наполнители: муку, крахмал, соли серной и соляной кислот, бентонит и др.

Номенклатура ферментных препаратов микробного происхождения

Существует определенная система названия ферментных препаратов, в которой учитываются: основной фермент, источник получения и степень очистки. Подавляющее количество ферментных препаратов является комплексным, содержащим помимо основного фермента еще значительное количество сопутствующих ферментов и белков. Поэтому в технологии ферментов препараты чаще классифицируют по основному компоненту в смеси ферментов, присутствующих в данном препарате: амилолитические, протеолитические, липолитические и т.д.

Наименование каждого препарата включает сокращенное название основного фермента, затем добавляется видовое название продуцента, заканчивается название препарата суффиксом "ин". Например, амилолитические препараты, получаемые из культур Aspergillus oryzae и Bacillus subtilis, называются соответственно амил-ориз-ин (амилоризин) и амил-о-субтил-ин (амилосубтилин). Мальт авамор ин П2х (продуцент A. awamori содержит в основном мальтазу). Целло вирид ин Г3х (продуцент Trichoderma viride содержит в основном целлюлолитические ферменты).

Далее ставится индекс, в котором обозначены способ производства и степень очистки фермента от балластных веществ. При глубинном способе культивирования после названия ставится буква Г, а при поверхностном - П. После букв Г или П может стоять цифра, обозначающая степень чистоты препарата. Индекс 2х обозначает жидкий неочищенный концентрат исходной культуры; 3х - сухой ферментный препарат, полученный высушиванием распылением неочищенного раствора фермента (экстракта из поверхностной культуры или культуральной жидкости). Технические ферментные препараты с индексами 2х и 3х чаще используются в легкой промышленности и сельском хозяйстве. Для пищевой промышленности, медицины и научных исследований требуются очищенные и высокоочищенные ферментные препараты. Индекс 10х означает сухие препараты, полученные осаждением ферментов органическими растворителями или методом высаливания; цифрами 15х, 18х, 20х обозначают препараты, частично освобожденные не только от балластных веществ, но и от сопутствующих ферментов; выше 20х - высокоочищенные и даже гомогенные ферментные препараты.

В нашей стране выпускаются следующие ферментные препараты: амилосубтилин и протосубтилин (продуцент - Bacillus subtilis), пектофоетидин (Aspergillus foetidus), мальтаваморин (Aspergillus awamori), амилоризин (Aspergillus oryzae), глюконигрин (Aspergillus niger) и другие.

5.5. Применение ферментных препаратов в пищевой промышленности

Протеолитические ферменты продуцируются грибами рода Aspergillus, Penicillium, бактериями рода Bacillus, дрожжами рода Saccharomyces. Эти ферменты используют при переработке животного сырья в мясной, молочной и рыбной промышленности. Они применяются как размягчители мяса, ускорители созревания мяса и рыбы. При проведении слабого протеолиза с использованием набора специфических ферментов происходит незначительное изменение структуры мяса, но оно становится качественно лучше, значительно мягче. Особенно важным является действие ферментов на белки соединительной ткани. В этом случае оказывается возможным значительно полнее использовать все части туши.

Ввиду нехватки сырья для получения сычужного фермента в последние годы ведутся интенсивные работы по поиску его заменителей ферментами микробного происхождения для сыродельной промышленности. Однако все они уступают ему по свертывающей способности. Хорошими сгустителями являются протеазы, полученные из штаммов микроскопических грибов рода Mucor и бактерий родов Bacillus, Pseudomonas и др. В настоящее время в сыроделии применяется около 10 % реннина микробного происхождения.

В пивоваренном производстве протеолитические ферменты применяют для устранения белковых помутнений, а в хлебопечении - для сокращения времени замеса теста из пшеничной муки с высоким содержанием клейковины. Протеолитические ферменты используют как добавки к моющим средствам, что дает высокий эффект при устранении белковых загрязнений.

Амилолитические ферменты продуцируют грибы рода Aspergillus, Penicillium, Mucor и бактерии рода Bacillus. Самыми большими потребителями являются спиртовая и пивоваренная промышленности. Амилазы микробного происхождения добавляют при подготовке пивного сусла, при спиртовом брожении, чтобы перевести крахмал в форму, усваиваемую дрожжами. Тем самым можно ускорить или полностью заменить солодование зерна в пивоварении. Кроме того, амилолитические ферменты применяют в хлебобулочном производстве, способствуя улучшению структуры мякиша хлеба.

Целлюлолитические ферменты, участвующие в гидролизе целлюлозы, представляют собой комплекс, состоящий из нескольких ферментов с различной специфичностью действия: эндоглюканазы, экзоглюкозидазы, β-глюкозидазы и др. Целлюлазы и гемицеллюлазы могут быть получены только с помощью микроорганизмов. Целлюлазы, продуцируемые грибами родов Fusarium, Trichoderma, Penicillium, применяют в спиртовой, пищеконцентратной промышленностях, где сырьем являются растительные материалы или отходы переработки растений, например, в производстве растворимого кофе.

Пектолитические ферменты продуцируют грибы родов Aspergillus (Aspergillus niger), Penicillium, бактерии Erwinia caratovora, Clostridium sp. Пектиназы представляют комплекс ферментов, состоящий из полигалактуроназы, пектинметилэстеразы и др. Эти ферменты используют при производстве осветленных соков из плодов и ягод, для осветления вин. Применение пектиназ в производстве соков обусловлено тем, что они катализируют гидролиз пектиновых веществ растительных клеток, тем самым освобождая сок из клеточных структур. Применение пектиназ в виноделии увеличивает скорость фильтрации сусла, способствует его осветлению и стабилизации. При этом возрастает содержание экстрактивных веществ, витамина С, флавоноидов, обладающих Р-витаминной активностью.

В производстве кисло-молочных продуктов используется реннин - ферментный препарат, осуществляющий свертывание молока. Получают его с помощью микроорганизмов Endothia parasitica и Mucor sp.

Наибольшее распространение получили препараты, в которых ферменты в активной форме прикреплены к нерастворимой основе. Такие ферментные препараты называют иммобилизованными. Преимуществом их применения является возможность многократного использования. В этом случае обрабатываемый раствор пропускают через основу с иммобилизованным ферментом.

Вопросы для самопроверки

1. В чем отличие ферментов от ферментных препаратов?

2. Что такое активность ферментного препарата?

3. Перечислите основные источники получения ферментов растительного и живтоного происхождения.

4. Перечислите, какие микроорганизмы применяют для промышленного производства ферментных препаратов.

5. Какие способы культивирования микроорганизмов используют при производстве ферментных препаратов?

6. Расскажите, по какому принципу составляется название ферментного препарата микробного происхождения.

7. Ферментные препараты какого действия наиболее широко используются в пищевой промышленности?

8. Области применения амилолитических ферментов.

9. В каких отраслях пищевой промышленности используются пектолитические ферменты?

10. Назовите продуцентов и область применения целлюлаз.

11. Что такое иммобилизованные ферменты, в чем их преимущество?

 

ТЕМА 6. ПОЛУЧЕНИЕ БИОМАССЫ МИКРООРГАНИЗМОВ

 

6.1. Получение биомассы микроорганизмов в качестве источника белка

Сбалансировать содержание в кормах белка и его аминокислотный состав можно с помощью биомассы микроорганизмов.

Этот белковый источник имеет ряд преимуществ:

- большая скорость роста микроорганизмов (микроорганизмы растут в 500 раз быстрее, чем сельскохозяйственные культуры и в 1000-5000 раз быстрее, чем самые быстрорастущие породы животных);

- высокое содержание белка в биомассе: дрожжи способны накапливать до 40-50 % белка от своей массы, а некоторые бактерии до 60-70 % белка;

- удовлетворительная биологическая ценность белков: по содержанию большинства незаменимых аминокислот (лизина, триптофана и др.) белок многих дрожжей и бактерий соответствует эталону (яичному белку);




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 693; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.083 сек.