Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расстроенный врач и больной гений 2 страница




 

Эта формула эквивалентна той, которую наизусть знает каждый школьник и которая в наши дни присутствует во всех справочниках.

Решение кубического уравнения, данное во времена Возрождения, выглядит похоже, но посложнее. В современных обозначениях оно имеет следующий вид. Пусть x 3 + ax = b . Тогда

 

Коль скоро речь зашла о формулах, то эта среди них — относительно простая (поверьте!), однако для того, чтобы стало возможным записать ее в таком виде, потребовалось развитие большого числа алгебраических идей. Это заведомо самая сложная формула из тех, что нам встретятся в этой книге, и в ней использованы все три типа обозначений, которые я ввел: буквы, приподнятые числа и знак, причем корни здесь как квадратные, так и кубические. Понимания этой формулы от вас не требуется и определенно не требуется производить с ней никаких вычислений. Но важно понять ее общее устройство. Начнем с некоторой терминологии, которая будет нам полезна по мере продвижения вперед.

Алгебраическое выражение вида 2x 4 − 7x 3 − 4x 2 + 9 называется полиномиальным выражением или, иначе говоря, многочленом. Такие выражения образованы путем сложения друг с другом различных степеней неизвестного. Числа 2, −7, −4 и 9, на которые умножаются эти степени, называются коэффициентами. Старшая степень, в которой неизвестное входит в многочлен, называется степенью этого многочлена, так что приведенный выше многочлен имеет степень 4. Имеются специальные названия для многочленов младших степеней (от 1 до 3 включительно): линейный, квадратичный и кубический[18]. Решения соответствующего уравнения 2x 4 − 7x 3 − 4x 2 + 9 = 0 называются корнями многочлена.

Теперь можно разобрать формулу Кардано на части. Она построена из коэффициентов a и b с использованием сложения, вычитания, умножения и деления (но только на определенные целые числа — 2, 4 и 27). Эзотерические аспекты двояки. Имеется квадратный корень — в действительности один и тот же квадратный корень встречается дважды, но один раз он прибавляется, а другой раз вычитается. Наконец, имеются два кубических корня, причем это кубические корни из величин, в которые входят квадратные корни. Так что помимо безобидных алгебраических операций (под которыми я понимаю те, что попросту перемешивают члены) «скелет» решения можно выразить так: «Берем квадратный корень, затем кубический корень; делаем это еще раз; складываем результаты».

Это все, что нам понадобится. Но без этого, я полагаю, нам не обойтись.

Чего математикам эпохи Возрождения сначала никак не удавалось ухватить, пока последующие поколения этого не поняли, так это того факта, что данная формула есть не просто решение одного типа кубических уравнений. Это — полное решение всех типов кубических уравнений, с точностью до простых алгебраических преобразований. Для начала, если кубический член есть, скажем, 5x 3, а не x 3, то можно просто разделить все уравнение на 5; с этим-то математики эпохи Возрождения неплохо разобрались. Более тонкая идея, которая потребовала тихой революции во взглядах на числа, состоит в том, что если разрешить коэффициентам а и b быть при необходимости отрицательными , то можно избежать бесплодных разграничений между различными случаями. Наконец, имеется чисто алгебраический фокус: если в уравнение входит квадрат неизвестного, от него всегда можно избавиться — надо заменить x на x плюс специальным образом подобранная постоянная, и если все сделать правильно, то слагаемое с квадратом замечательным образом исчезает. Здесь опять же будет легче, если перестать беспокоиться о том, являются ли числа положительными или отрицательными. Наконец, математики Возрождения тревожились по поводу слагаемых, которые полностью отсутствовали в уравнении, в то время как, на наш современный взгляд, средство от их тревоги очевидно: такие слагаемые не столько отсутствуют, сколько имеют перед собой коэффициент, равный нулю. Тогда одна и та же формула применима во всех случаях.



 

Задача решена?

Не совсем. Я вас обманул.

Обман вот где: я сказал, что формула Кардано решает все кубики (то есть кубические уравнения). В некотором смысле это утверждение неверно, и этот факт оказался важным. С другой стороны, обман был не очень серьезным, поскольку все зависит от того, что понимать под словом «решает».

Сам Кардано заметил эту сложность — и этот факт красноречиво свидетельствует о его внимании к мелочам. Кубическое уравнение, как правило, имеет или три решения (меньше, если исключить отрицательные числа), или одно. Кардано заметил, что когда имеются три решения — скажем, 1, 2 и 3, — то их никаким разумным образом не удается получить из формулы для решений. Вместо этого появляются квадратные корни из отрицательных чисел.

А именно, Кардано заметил, что кубическое уравнение x 3 = 15x + 4 имеет очевидное решение x = 4. Но, применив формулу Тартальи, он получил «ответ»

 

казавшийся бессмысленным.

Немногие среди европейских математиков тех дней были настолько отчаянными, чтобы согласиться принять отрицательные числа. Их коллеги на Востоке пришли к пониманию отрицательных величин намного раньше. В Индии последователи джайнизма развили зачатки понятия отрицательных величин уже в 400 году, а в 1200-м в китайской системе «счетных палочек» использовались красные палочки для положительных чисел и черные для отрицательных — хотя и только в определенном, ограниченном контексте.

Если уже отрицательные числа вызывали затруднение, то квадратные корни из них представляли собой затруднение куда большее. Сложность состоит в том, что квадрат как положительного, так и отрицательного числа всегда положителен — я не буду объяснять почему, но это единственный способ заставить все законы алгебры работать непротиворечивым образом. Так что, даже если вы не против использования отрицательных чисел, вам вроде бы придется признать, что разумным способом изрекать квадратные корни из них нельзя. А поэтому всякое алгебраическое выражение, содержащее квадратный корень из отрицательной величины, должно быть бессмыслицей.

И тем не менее формула Тартальи привела Кардано именно к таким выражениям. В особенности тревожил его тот факт, что в случаях, когда было известно решение, полученное каким-то другим способом, формула как будто отказывалась его воспроизводить.

В 1539 году обеспокоенный Кардано решил обсудить вопрос с Тартальей: «Я обратился с вопросом о решении различных проблем, на которые вы не дали мне ответа; одна из них — задача о кубе, равном неизвестному плюс число. Я, без сомнения, уловил правило, но когда куб одной трети коэффициента при неизвестном превосходит квадрат половины числа, тогда, как кажется, я не могу с помощью этого правила удовлетворить мое уравнение».

Здесь Кардано в точности описывает условие, когда квадратный корень оказывается корнем из отрицательного числа. Ясно, что он превосходно ухватил всю суть вопроса и обнаружил подводный камень. Менее ясно, достиг ли Тарталья того же уровня понимания своей собственной формулы, потому что ответ его сводился к следующему: «Вы не владеете настоящим способом решения задач этого типа…. Ваши методы целиком неправильны». Возможно, Тарталья намеренно отказывал Кардано в помощи. А может быть, он просто не понимал, о чем тот говорит. Как бы то ни было, Кардано смог разглядеть трудный вопрос, которому предстояло занимать умы математиков всего мира в течение последующих 250 лет.

 

Даже во времена Возрождения проскальзывали намеки, что здесь происходит нечто важное. Тот же вопрос возник в другой задаче, обсуждавшейся в «Великом искусстве», — найти два числа, сумма которых равна 10, а произведение равно 40. Получалось «решение» 5 + √−15 и 5 − √−15. Кардано заметил, что если не обращать внимания на вопрос о том, что же означает квадратный корень из минус пятнадцати, а просто делать вид, что перед нами обычный квадратный корень, то удается проверить, что эти «числа» действительно удовлетворяют требуемому уравнению. При их сложении друг с другом квадратные корни сокращаются, а две остающиеся пятерки складываются в число 10, как того и требовало условие задачи. При умножении же получается 25 − (√−15)2, что равно 25 + 15, т.е. 40. Кардано не знал, как понять эти странные вычисления. «Таковы, — писал он, — пути арифметической изысканности, приводящей в конце концов к вещам столь же изощренным, сколь и бесполезным».

В своей «Алгебре» 1572 года Рафаэле Бомбелли — сын болонского торговца шерстью — заметил, что подобные же вычисления, в которых с «мнимыми» корнями обращаются так, как если бы они были настоящими числами, позволяют преобразовать таинственную формулу для решения озадачившего Кардано кубического уравнения в правильный ответ x = 4. Книгу он написал, чтобы занять свободное время, образовавшееся у него, пока он руководил осушением болот для Апостольской палаты — папского юридического и финансового ведомства. Бомбелли заметил, что

 

(2 + √−1)3 = 2 + √−121

 

и

 

(2 − √−1)3 = 2 − √−121,

 

так что сумма двух странных кубических корней принимает вид

 

(2 + √−1) + (2 − √−1),

 

что равно 4. Бессмысленный корень каким-то образом оказался осмысленным и привел к правильному ответу. Бомбелли, возможно, был первым математиком, кто понял, что можно выполнять алгебраические действия с квадратными корнями из отрицательных чисел и получать при этом осмысленные ответы. Это недвусмысленно намекало, что таким числам можно дать разумную интерпретацию, но у Бомбелли не было указаний на то, какую именно.

 

Математической вершиной книги Кардано была не кубика, а квартика. Его ученик Феррари сумел перенести методы Тартальи и дель Ферро на уравнения, содержащие четвертую степень неизвестного. Формула Феррари включает только квадратные и кубические корни — корни четвертой степени не нужны, поскольку такой корень есть просто квадратный корень квадратного корня.

«Великое искусство» не содержит решения квинтики — уравнения, в котором неизвестное появляется в пятой степени. Но ведь по мере возрастания степени уравнения метод его решения в свою очередь усложнялся, так что мало кто сомневался, что, применив достаточную изобретательность, можно будет решить и уравнение пятой степени — скорее всего, потребуется использовать корни пятой степени, так что соответствующая формула окажется весьма громоздкой.

Кардано не стал тратить время на поиски такого решения. После 1539 года он вернулся к другим своим многочисленным занятиям, в особенности к медицине. В это время его семейная жизнь начала рушиться самым ужасающим образом: «Мой [младший] сын между днем своей женитьбы и днем своего рокового конца был арестован по обвинению в попытке отравления собственной жены, пока она еще оправлялась после родов. В 17-й день февраля он был задержан, а пятьдесят три дня спустя, 13 апреля, обезглавлен в тюрьме». Кардано пытался примириться с этой трагедией, но беда не приходит одна. «Наш дом — мой дом — на протяжении нескольких дней стал свидетелем трех похорон: моего сына, маленькой внучки Диареджины и кормилицы; мой новорожденный внук также был недалек от смерти». При всем этом в силу своей природы Кардано был неисправимым оптимистом: «Тем не менее во мне еще так много благодати, что, если бы она принадлежала кому-то другому, тот бы считал себя счастливчиком».

 

Глава 5

 

Какую дорогу избрать? Какой предмет изучать? Ему нравились оба, но пришло время выбирать — ужасная дилемма. На дворе был 1796 год, а блестящий 19-летний юноша стоял перед решением, которому предстояло определить его дальнейшую жизнь. Настал момент определиться насчет жизненного пути. Карл Фридрих Гаусс происходил из обыкновенной семьи, но знал, что ему уготовано величие. Его способности были очевидны для всех, включая герцога Брауншвейгского — суверена той области, где Гаусс родился и где жила его семья. Проблема состояла в том, что способностей у него было слишком много, и сейчас предстояло выбрать между двумя пристрастиями — математикой и филологией.

Однако 30 марта все решилось помимо его воли, само собой, как результат любопытного, замечательного и совершенно беспрецедентного открытия. В тот день Гаусс нашел эвклидово построение правильного многоугольника с семнадцатью сторонами.

Это может звучать как нечто понятное лишь посвященным, но у Эвклида не было и намека на это построение. Несложно найти способы построения правильных многоугольников с тремя, четырьмя, пятью или шестью сторонами. Можно соединить конструкции для треугольника и пятиугольника и получить таким образом многоугольник с пятнадцатью сторонами, можно удваивать число сторон, что даст восемь, десять, двенадцать, шестнадцать, двадцать…

Но семнадцать сторон не лезли ни в какие ворота. Однако же построение его было верным, и Гаусс абсолютно точно знал почему . Все сводилось к двум очевидным свойствам числа 17. Это число простое: оно делится нацело только само на себя и на 1. Кроме того, оно на единицу превосходит степень двойки: 17 = 16 + 1 = 24 + 1.

Если бы вы были гением, как Гаусс, вам было бы понятно, почему из этих двух непритязательных утверждений следует, что существует построение правильного семнадцатиугольника с помощью циркуля и линейки. Если бы вы были любым другим из великих математиков, живших между 500 годом до Р.Х. и 1796 годом, вы бы даже не заподозрили наличия здесь связи. Мы знаем об этом потому, что они действительно ничего такого не заподозрили.

Если Гаусс и нуждался в каком-либо подтверждении своего математического таланта, то он определенно такое подтверждение получил. И решил стать математиком.

 

Семья Гауссов перебралась в Брауншвейг в 1740 году, когда дед Карла устроился там садовником. Один из трех его сыновей, Гебхард Дитрих Гаусс, также стал садовником, время от времени подрабатывая то тут, то там — например, на кладке кирпича или прокладке каналов; иногда он выполнял работу «фонтанных дел мастера», а также помогал купцам и был казначеем небольшой похоронной кассы. Все более прибыльные профессии конвоировались гильдиями, и чужакам — даже чужакам во втором поколении — доступа туда не было. Гебхард женился во второй раз в 1776 году на Доротее Бенце — дочери каменщика, работавшей прислугой. Их сын Иоганн Фридерих Карл (сам себя всегда называвший Карлом Фридрихом) родился в 1777 году.

Гебхард был честным, упрямым, грубоватым человеком и не отличался особым умом. Доротея обладала острым умом и сильным характером — качества, которые оказались Карлу как нельзя более кстати. Когда мальчику исполнилось два года, его мать уже понимала, что у нее на руках необыкновенно одаренный ребенок, и она всей душой желала дать ему образование, которое позволило бы развить его способности. Гебхард же предпочел бы, чтобы Карл стал каменщиком. Лишь благодаря матери Карл смог исполнить предсказание своего друга — геометра Вольфганга Бойяи. Когда сыну Доротеи было 19, Бойяи сказал, что Карл станет величайшим математиком в Европе. Она растрогалась до слез.

Сын не забыл преданности матери: последние двадцать лет своей жизни она жила у него; ее зрение постепенно ухудшалось, и в конце концов она полностью ослепла. Великий математик решил, что будет сам о ней заботиться, и ухаживал за матерью до самой ее смерти в 1839 году.

Гаусс рано проявил свои способности. В трехлетнем возрасте он наблюдал, как отец, бравший в то время подряды на выполнение работ бригадой подсобных рабочих, раздавал еженедельный заработок. Заметив ошибку в расчетах, мальчик указал на нее изумленному отцу. Никто до этого не обучал его числам. Он выучил их сам.

Несколько лет спустя школьный учитель Й.Г. Бюттнер, желая немного передохнуть, задал классу, где учился Гаусс, задачу в надежде, что она займет их на несколько часов. Задача известна нам не вполне точно, но это было что-то вроде «сложить все числа от 1 до 100». Скорее всего, числа были не такие круглые, но в них содержалась скрытая закономерность: они образовывали арифметическую прогрессию, что означает, что разность между любыми двумя соседними числами была одинакова. Имеется простой, но не сразу очевидный способ сложения чисел из арифметической прогрессии, но в классе этого не проходили, так что ученикам предстоял долгий труд по сложению чисел одного за другим.

Этого, по крайней мере, ожидал Бюттнер. Он велел тем, кто выполнит задание, сразу же положить свою аспидную доску с ответом к нему на стол. Пока его одноклассники выписывали нечто вроде

 

1 + 2 = 3

3 + 3 = 6,

6 + 4 = 10

 

с неизбежной ошибкой

 

10 + 5 = 14

 

и при этом не знали, где найти место на доске для следующего действия, Гаусс, подумав лишь мгновение, написал на своей доске мелом одно число, подошел к учителю и положил доску ему на стол ответом вниз.

«Он там», — сказал он и вернулся на свое место.

В конце урока, когда учитель собрал все доски, правильный ответ был лишь на одной — на Гауссовой.

Опять же, мы не знаем наверняка, как рассуждал Гаусс, но можно предложить правдоподобную реконструкцию. Скорее всего, Гауссу уже доводилось размышлять о суммах подобного рода, и он углядел полезный прием. (Если нет, значит, он сумел добрести его прямо на месте.) Простой способ получить ответ состоит в том, чтобы сгруппировать числа в пары: 1 и 100, 2 и 59, 3 и 98 и так далее до пары, состоящей из 50 и 51. Каждое число от 1 до 100 встречается в некоторой паре ровно один раз, поэтому сумма всех этих чисел равна сумме всех пар. Но в каждой паре сумма равна 101. А всего пар 50. Так что ответ — 50×101 = 5050. Это (или что-то эквивалентное) Гаусс и написал на своей доске.

Смысл этой истории не в том, что Гаусс был необычно силен в арифметике, хотя так оно и было — позднее, занимаясь астрономией, он запросто выполнял громоздкие вычисления со многими десятичными знаками, работая со скоростью тех умственно неполноценных людей, единственная способность которых состоит в навыке необычайно быстрого счета. Но вычислениями с быстротой молнии его способности не ограничивались. Чем он обладал в избытке, так это даром видеть в математических задачах скрытые закономерности и использовать их для нахождения решения.

Бюттнер был настолько потрясен тем, что Гаусс так легко справился с задачей, что, к чести его будь сказано, снабдил мальчика лучшей книгой по арифметике, которую можно было купить. Через неделю Гаусс уже превзошел своего учителя.

Так случилось, что у Бюттнера был 17-летний помощник Иоганн Бартельс, в официальные обязанности которого входило чинить перья для письма и помогать мальчикам ими пользоваться. Неофициально же Бартельс был влюблен в математику. Он привязался к яркому десятилетнему ученику, и они стали друзьями на всю жизнь. Подбадривая друг друга, они стали заниматься математикой вместе.

Бартельс был на дружеской ноге с некоторыми влиятельными фигурами в Брауншвейге, благодаря чему там вскоре узнали, что у них в глуши живет безвестный гений, семья которого прозябает на грани нищеты. Один из этих господ, советник и профессор Э.А.В. Циммерман, в 1791 году представил Гаусса герцогу Брауншвейгскому Карлу-Вильгельму Фердинанду. Герцог был очарован и впечатлен настолько, что взял на себя оплату образования Гаусса (он время от времени делал такое для способных детей бедняков).

Математика была не единственным талантом мальчика. К 15 годам он достиг значительных успехов в древних языках, которые изучал в местной гимназии; обучение там также оплачивал герцог. (В старой немецкой образовательной системе гимназия была чем-то вроде школы для подготовки к поступлению в университет. Слово переводится примерно как «старшая школа», но учиться там можно было только за плату.) Многие из лучших работ Гаусса были позднее написаны на латыни. В 1792 году он поступил в Карлово училище в Брауншвейге, и снова обучение оплачивал герцог.

К 17 годам он уже доказал замечательную теорему в теории чисел, известную как квадратичный закон взаимности. В ней утверждается фундаментальная, но достаточно неординарная закономерность в свойствах делимости полных квадратов. На эту закономерность обратил внимание еще Леонард Эйлер, но Гаусс об этом не знал и сам открыл все заново. Лишь очень немногие вообще задумывались о том, чтобы поставить этот вопрос. Юноша, кроме того, глубоко размышлял о теории уравнений. На самом деле эти размышления и привели его к построению правильного 17-угольника и тем самым направили на путь, ведущий к математическому бессмертию.

 

Между 1795 и 1798 годами Гаусс учился, чтобы получить диплом в Геттингенском университете, причем за обучение снова платил герцог Фердинанд. У Гаусса было немного друзей, но те дружеские отношения, которые он завязал, были глубокими и долгими. В Геттингене же Гаусс встретил Бойяи — опытного геометра в эвклидовых традициях.

Математические идеи приходили к Гауссу столь быстро и в таком изобилии, что иногда, казалось, полностью поглощали его. Когда в голове у него возникала новая идея, он мог внезапно уставиться в пространство, бросив при этом все, чем занимался до этого. Он сформулировал некоторые теоремы, которые были бы справедливы, «если бы истинной была не эвклидова, а другая геометрия». На переднем плане его размышлений было его главное сочинение — Disquisitiones Arithmeticae — и к 1798 году эта книга была в основном закончена. Однако Гаусс хотел удостовериться, что отдал должное своим предшественникам в вопросах приоритета, для чего отправился в университет Хельмштедта, где была прекрасная математическая библиотека, которую курировал Иоганн Пфафф — самый известный из немецких математиков.

В 1801 году, после огорчительной задержки в типографии, Disquisitiones Arithmeticae наконец вышла с изобильным и, без сомнения, искренним посвящением герцогу Фердинанду. Щедрость герцога не иссякла, даже когда Карл закончил университет. Фердинанд оплатил расходы, необходимые для издания с соблюдением всех необходимых требований диссертации Гаусса, представленной им в университете Хельмштедта. А когда Карл обеспокоился своим материальным положением после окончания университета, герцог определил ему пособие, позволявшее продолжать исследования, не слишком заботясь о деньгах.

Заслуживает упоминания и такая сторона Disquisitiones Arithmeticae , как ее бескомпромиссный стиль. Доказательства написаны очень тщательно и логически безупречно, однако изложение не делает читателю никаких поблажек и не дает подсказок насчет интуитивных соображений, стоящих за той или иной теоремой. Позднее Гаусс оправдывал такую позицию (которой он придерживался на протяжении всей своей карьеры) тем, что «когда строительство прекрасного здания закончено, окружавших его лесов больше не должно быть видно». Это прекрасно, если цель состоит исключительно в том, чтобы люди любовались зданием. Но не так уж прекрасно, если есть желание научить их строить самостоятельно. Карл Густав Якоб Якоби, работы которого по комплексному анализу основаны на идеях Гаусса, сказал о своем прославленном предшественнике, что «он как лис, который хвостом заметает свои следы на песке».

 

Приблизительно в то время математики постепенно подходили к осознанию того факта, что, хотя комплексные числа кажутся искусственным образованием, а их интерпретация туманна, использование их намного упрощает алгебру, позволяя решать уравнения единообразным способом. Изящество и простота — пробный камень математики, и новаторские концепции, сколь бы странными они сначала ни казались, имеют тенденцию в конце концов брать верх, если они способствуют сохранению изящества и простоты предмета.

Если работать только с традиционными «вещественными» числами, то уравнения ведут себя раздражающе беспорядочным образом. Уравнение x 2 − 2 = 0 имеет два решения — плюс или минус квадратный корень из двух, — но очень похожее уравнение x 2 + 1 = 0 вообще не имеет решений. Однако это уравнение имеет два решения в комплексных числах: i и −i . Символ i для обозначения √−1 был введен Эйлером в 1777 году, но появился в печати лишь в 1794-м. Теорию, выраженную лишь в терминах «вещественных» уравнений, загромождают исключения и необходимость педантичного разграничения различных случаев. Аналогичная теория комплексных уравнений оставляет в стороне все эти сложности за счет того, что с самого начала предлагается купить оптом одно-единственное усложнение — позволить комплексным числам появляться наравне с вещественными.

К 1750 году идеи, вызванные к жизни итальянскими математиками эпохи Возрождения, достигли зрелости и замкнутости. Предложенные методы решения кубики и квартики воспринимались как естественные обобщения вавилонского решения квадратных уравнений. В достаточных подробностях была разработана связь между радикалами и комплексными числами, причем было осознано, что в этом расширении обычной числовой системы у числа имеется не один кубический корень, а три; не один корень четвертой степени, а четыре; не один корень пятой степени, а пять. Ключом к пониманию того, откуда берутся эти новые корни, стало прекрасное свойство «корней из единицы», то есть корней n- й степени из числа 1. Эти корни образуют вершины правильного n- угольника в комплексной плоскости[19], одна вершина которого лежит в точке 1. Остальные корни из единицы располагаются на равных расстояниях вдоль окружности единичного радиуса с центром в точке 0. На рисунке показано расположение корней пятой степени из единицы.

В более общем виде, если дан любой конкретный корень пятой степени из некоторого числа, то можно получить еще четыре, умножая его на q, q 2, q 3 и q 4[20]. Эти числа также располагаются по окружности с центром в 0. Например, корни пятой степени из 2 показаны на рисунке справа.

 

 

Слева: корни пятой степени из единицы в комплексной плоскости.

Справа: корни пятой степени из двух.

 

Все это очень мило, но здесь же содержится намек на нечто гораздо более глубокое. Корни пятой степени из 2 можно рассматривать как решения уравнения x 5 = 2. Это уравнение пятой степени, и у него пять комплексных решений, причем только одно из них вещественно. Аналогичным образом уравнение x 4 = 2 имеет четыре решения (все корни четвертой степени из 2), уравнение на корни 17-й степени из 2 имеет 17 решений и так далее. Не обязательно быть гением, чтобы подметить правило: число решений равно степени уравнения.

То же самое, как представлялось, выполняется не только для уравнений на корни п- й степени, но и вообще для любого алгебраического уравнения . Математики пребывали в убеждении, что в области комплексных чисел каждое уравнение имеет ровно столько решений, какова степень уравнения. (Технически это утверждение верно, только когда решения подсчитываются с учетом их «кратностей». Если это соглашение не использовать, то число решений равно степени уравнения или меньше ее.) Эйлер доказал это свойство для уравнений степеней 2, 3 и 4 и утверждал, что аналогичные методы будут работать и в общем случае. Его идеи выглядели правдоподобно, но заполнение пробелов в намеченной им схеме доказательства оказалось практически невозможным, и даже сегодня требуются серьезные усилия, чтобы довести метод Эйлера до логического конца. Тем не менее математики предполагали, что если они решают уравнение некоторой степени, то следует ожидать появления в точности стольких корней, какова эта степень.

По мере того как Гаусс развивал свои идеи в теории чисел и анализе, его все менее и менее удовлетворяло то, что никто не доказал это предположение. Характерно, что в конце концов он сам предложил доказательство. Оно было сложным и на удивление непрямым: любой квалифицированный математик мог убедиться в его верности, но никто не мог сообразить, как же Гаусс до него додумался. Математический лис мстительно вилял хвостом.

 

В переводе с латыни заглавие диссертации Гаусса звучало как «Новое доказательство, что каждую рациональную целую функцию одного переменного можно разложить на вещественные множители первой или второй степени». Если пробиться через профессиональные термины, принятые в то время, то заглавие утверждает, что каждый многочлен (с вещественными коэффициентами) равен произведению выражений, представляющих собой линейные или квадратичные многочлены.

Гаусс использовал слово «вещественные», чтобы ясно показать: он работает в рамках традиционной числовой системы, в которой отрицательные величины не имеют квадратных корней. В наши дни мы бы выразили теорему Гаусса в логически равносильном, но более простом виде: каждый вещественный многочлен степени n имеет n вещественных или комплексных корней. Но Гаусс тщательно подбирал выражения таким образом, чтобы его работа не опиралась на все еще несколько сбивающую с толку систему комплексных чисел. Комплексные корни вещественного многочлена всегда можно собрать в пары, что приводит к вещественным квадратичным множителям, а линейные множители отвечают вещественным корням. Сформулировав заглавие в терминах множителей этих двух типов («множители первой или второй степени»), Гаусс обошел стороной спорный вопрос о комплексных числах.





Дата добавления: 2017-01-14; Просмотров: 21; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.162.94.15
Генерация страницы за: 0.106 сек.