Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Служащий бюро патентов 3 страница




Риччи — это Грегорио Риччи-Курбастро, который вместе со своим студентом Туллио Леви-Чивитой изобрел анализ на римановых многообразиях. Тензор Риччи дает более простую меру кривизны, чем исходная концепция Римана.

Согласно другим источникам, Эйнштейн сказал Гроссманну: «Ты должен мне помочь, а не то я сойду с ума!» — и Гроссманн исполнил это требование. Как позднее писал Эйнштейн, он «не только избавил меня от изучения соответствующей математической литературы, но и поддержал меня в моем поиске полевых уравнений гравитации». В 1913 году Эйнштейн и Гроссманн опубликовали первые результаты своих совместных усилий, закончив гипотезой о виде искомых полевых уравнений: тензор энергии-импульса должен быть пропорционален… чему-то.

Чему?

Ответа на этот вопрос они пока не знали. Там должен был стоять некий другой тензор, дающий другое измерение кривизны.

Здесь они оба сделали математические ошибки, которые увели их в долгую погоню за несбыточным. И Эйнштейн, и Гроссман были убеждены (вполне справедливо), что их теория должна давать ньютоновскую гравитацию в соответствующем предельном случае — случае плоского пространства-времени, слабой гравитации. Отсюда они получили некоторые технические требования на искомые уравнения, т.е. требования к природе этого самого «чего-то». Но их аргументация была ошибочной, и эти требования на самом деле не следовало предъявлять.

Эйнштейн был уверен, что правильные полевые уравнения должны определять математический вид метрики — формулы для расстояния в пространстве-времени, которая определяет все его геометрические свойства — единственным образом, однозначно. Это было попросту неверно: изменения системы координат могут изменить данную формулу, не оказывая при этом никакого влияния на внутреннюю кривизну пространства. Но Эйнштейн не знал о так называемых тождествах Бьянки, которые проясняют отсутствие единственности; по-видимому, не знал о них и Гроссманн.

Такое состояние — сущий кошмар для каждого ученого: по видимости неопровержимая идея, которая вроде бы ведет в правильном направлении, на деле заводит в ужасные дебри. Устранить такую ошибку отчаянно трудно, ведь вы уверены, что никакой ошибки нет. Часто даже не удается понять, какие именно допущения вы незаметно сделали.

К концу 1914 года Эйнштейн наконец осознал, что полевые уравнения не могут определять метрику единственным образом, потому что имеется возможность выбора различных систем координат: это не влияет на физику, но меняет формулу для метрики. Он все еще не знал о тождествах Бьянки, но теперь они ему были не нужны. Он наконец понял, что имеется свобода в выборе любых координат из соображений удобства.



18 ноября 1914 года Эйнштейн открыл новый фронт в войне с уравнениями гравитационного поля. Он подобрался достаточно близко к окончательной формулировке, чтобы сделать два предсказания. Одно из них — на самом деле скорее «послесказание», в том смысле, что оно было сделано после события. Оно состояло в объяснении тончайших изменений, к тому времени уже наблюдавшихся в орбите Меркурия. Положение перигелия — ближайшего к Солнцу положения планеты — медленно изменяется. Из новой теории гравитации Эйнштейн смог вывести, насколько быстро должен двигаться перигелий, — и результат его вычисления совпал с результатами наблюдений.

Второе предсказание требовало для своего подтверждения или опровержения новых наблюдений; то была прекрасная новость, поскольку новые наблюдения — это лучшая проверка новых теорий. Согласно теории Эйнштейна, гравитация должна изгибать свет.

Геометрия этого эффекта проста и имеет дело с геодезическими — кратчайшими — путями между двумя точками. Если растянуть струну и приподнять ее, она примет вид прямой линии; это происходит потому, что в эвклидовом пространстве прямая линия является геодезической. Если, однако, два конца струны прижать к поверхности футбольного мяча, сильно ее при этом натянув, то она примет форму кривой, лежащей на поверхности мяча. Геодезические линии на искривленном пространстве — мяче — сами искривлены. То же происходит и в искривленном пространстве-времени, хотя подробности слегка отличны.

 

Физические обстоятельства, в которых этот эффект может проявиться, также «прямолинейны». Звезда, подобная Солнцу, будет изгибать любой свет, проходящий мимо нее. Единственным в то время способом наблюдать этот эффект было дождаться солнечного затмения, когда свет Солнца более не забивает свет от звезды, расположенной на небосводе близко к краю солнечного диска. Если Эйнштейн был прав, то кажущиеся положения таких звезд должны были слегка сдвинуться по сравнению с их положениями, когда они не находятся на одной линии с Солнцем.

Количественный анализ этого явления куда менее прямолинеен. Первая попытка Эйнштейна, предпринятая в 1911 году, предсказывала сдвиг в пределах угловой секунды. Ньютон предсказал бы близкое число, основываясь на своем убеждении, что свет состоит из мельчайших частиц: сила гравитации должна притягивать частицы, вызывая изгиб их траектории. Но в 1915 году Эйнштейн получил результат, в соответствии с которым в его новой теории свет должен отклониться на вдвое больший угол — на 1,74 угловой секунды.

Перспектива выбора между Ньютоном и Эйнштейном стала реальностью. 25 ноября 1914 года Эйнштейн записал свои полевые уравнения в их окончательном виде. Эти уравнения Эйнштейна составляют основу общей теории относительности — релятивистской теории гравитации. Они записываются в математическом формализме, известном как тензоры (некоторым образом нагроможденные друг на друга матрицы). Уравнения Эйнштейна говорят нам, что тензор Эйнштейна пропорционален скорости изменения тензора энергии-импульса[63]. Другими словами, кривизна пространства-времени пропорциональна степени присутствия материи. Эти уравнения подчиняются некоторому принципу симметрии, но он сугубо локален. В малых областях пространства-времени у них те же симметрии, что в специальной теории относительности, при условии, что во внимание принимается локальное влияние кривизны.

Эйнштейн заметил, что сделанные им второстепенные изменения не повлияли на его вычисления движения перигелия Меркурия и отклонения света звезд. Он представил свои уравнения Прусской Академии — и выяснил, что математик Давид Гильберт уже демонстрировал в точности такие же уравнения, но только утверждал, что это нечто намного большее, чем теория гравитации. На самом деле он утверждал, что они включают в себя электромагнитные уравнения, а это было ошибкой. Снова потрясает тот факт, что ведущие математики были предельно близки к тому, чтобы обойти Эйнштейна на финишной прямой.

Было предпринято несколько попыток проверить предсказание Эйнштейна об отклонении света гравитационным полем Солнца. Первой попытке — в Бразилии — помешал дождь. В 1914 году немецкая экспедиция отправилась наблюдать затмение в Крым, но началась Первая мировая война, и им было приказано возвращаться домой, и побыстрее. Некоторые вернулись, других арестовали, но в конце концов все добрались домой целыми и невредимыми. Естественно, никаких наблюдений провести не удалось.

Война не дала провести наблюдения и в Венесуэле в 1916 году. Американцы предприняли еще одну попытку в 1918-м, но с неубедительными результатами. Наконец, британская экспедиция, которую возглавил Артур Эддингтон, добилась успеха в мае 1919 года, но они не объявляли о своих результатах до ноября.

Когда же результаты были объявлены, вердикт был в пользу Эйнштейна, а не Ньютона. Отклонение имелось, оно было слишком большим, чтобы соответствовать ньютоновской модели, и оно прекрасно укладывалось в модель Эйнштейна.

Задним числом можно сказать, что результаты эксперимента были не столь уж решающими, как могло показаться. Экспериментальная ошибка была довольно велика, и лучшее, что удавалось заключить, — это что Эйнштейн, по всей видимости, прав. (Более свежие наблюдения с применением более совершенных методов и оборудования подтвердили теорию Эйнштейна.) Но в то время их представили как совершенно определенные, и средства массовой информации буквально взорвались. Человек, способный доказать неправоту Ньютона, определенно был гением. Тот, кому удалось открыть радикально новую физику, должен был быть величайшим из живущих ученых.

Так родилась легенда. Эйнштейн написал о своих идеях в Times of London. Через несколько дней на редакционной странице появился отклик:

 

Это по-настоящему шокирующая новость, и она заставляет усомниться даже в том, что наша вера в таблицу умножения так уж обоснованна. Потребуется не менее двух председателей двух Королевских Обществ, чтобы заявления о наличии веса у света и пределов у пространства приобрели некоторое правдоподобие — чтобы о подобном вообще можно было подумать. Это не так по определению — и дело с концом. Таким образом, во всяком случае, обстоит дело для обычных людей, как бы оно ни обстояло для высокоученых математиков.

 

Но высокоученые математики оказались правы. Вскоре Times сообщила миру, что «только двенадцать людей в состоянии понять теорию „внезапно ставшего знаменитым д-ра Эйнштейна“» — миф, который продолжал циркулировать, даже когда многочисленные студенты-физики уже рутинно изучали эту теорию.

В 1920 году у Гроссманна появились первые признаки рассеянного склероза. Он написал свою последнюю статью в 1930-м, а в 1936-м умер. Эйнштейн стал наиболее превозносимым физиком двадцатого столетия. Позднее в жизни он свыкся со своей славой, находя ее довольно занятной. На ранних этапах ему, по-видимому, нравилось общаться со средствами массовой информации.

Но здесь мы должны оставить Эйнштейна — заметив только, что после 1920 года его усилия в физике были посвящены бесплодному поиску путей сведения теории относительности и квантовой механики в единую объединенную теорию поля. Он продолжал работать над этой проблемой за день до своей смерти в 1955 году.

 

Глава 12





Дата добавления: 2017-01-14; Просмотров: 6; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.198.159.117
Генерация страницы за: 0.09 сек.