Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пектиновые вещества. Известно, что клеточные стенки растений представляют собой комплексную матрицу, состоящую из целлюлозы




Гемицеллюлозы

Известно, что клеточные стенки растений представляют собой комплексную матрицу, состоящую из целлюлозы, лигнина и гемицеллюлоз. Гемицеллюлозы – класс полисахаридов, не усваиваемых человеческим организмом.

Основная гемицеллюлоза в пищевых продуктах – ксилан. Этот полимер состоит в основном из β-D-(1,4)-ксилопиранозильных единиц, часто содержит β-L-арабинофуранозильные боковые цепи от третьей позиции нескольких D-ксилозных колец. Другие типичные составляющие – метильные эфиры D-глюкуроновой кислоты, D- и L-галактоза, ацетильные эфирные группы.

Присутствие гемицеллюлоз в пекарских изделиях имеет важное значение благодаря способности связывать воду. При приготовлении пшеничного теста они улучшают качество замеса, уменьшают энергию перемешивания, учавствуют в формировании структуры теста, в частности в формировании клейковины, что в итоге оказывает благоприятное действие для получения хорошего объема хлеба. Безусловный интерес при производстве хлебобулочных изделий представляет то, что гемицеллюлозы тормозят черствение хлеба.

Вторая важная функция гемицеллюлоз в пищевых продуктах заключается в том, что они, как пищевые волокна, образуют часть неперевариваемого комплекса, что чрезвычайно важно для перистальтики кишечника.

 

В растительной клетке пектин выполняет функцию структурирующего агента в центральном слое клеточной стенки. Кроме того, благодаря своей сильной способности к набуханию и своему коллоидному характеру пектин регулирует водный обмен растений. Название «пектин» происходит от греческого слова «пектос», что означает «желированный», «застывший».

Благодаря прекрасным желирующим свойствам пектин широко применяется при производстве пищевых продуктов – кондитерских изделий, желе, джемов. Пектин обладает детоксицирующими свойствами, т. к. способен связывать токсические элементы и радионуклиды и выводить их из человеческого организма (табл. 2.7).

 

Таблица 2.7. Связывание различных элементов (в % от добавленного компонента)

Элемент Пектин яблочного порошка Низкометоксилированный яблочный пектин
Свинец    
Медь    
Цезий    
Лантан    
Цирконий    
Никель    

 

Важным свойством пектина, обусловливающим его применение в пищевых продуктах, является гелеобразование. Образование гелей обусловлено ассоциацией пектиновых цепей с образованием трехмерной пространственной структуры, где два или более участка цепи сближаются друг с другом с регулярной частотой. Имеются различные виды ассоциаций, которые определяются степенью этерификации.

Нормальные пектины (степень этерификации 50%), как правило, лучше всего образуют гели при концентрации 1%, хотя концентрация может варьироваться в зависимости от вида пектина.

Желирование высокоэтерифицированных пектинов вызывается двумя факторами:

а) добавлением сахара, который вызывает дегидратацию пектиновых молекул, способствуя тем самым их сближению;

б) снижением рН среды, которое подавляет диссоциацию свободных карбоксильных групп, снижая тем самым электростатическое отталкивание цепей.

Данный механизм описан в литературе, как «сахарно-кислотное» желирование. Он протекает при содержании сухих веществ в среде не менее 55% и рН 3,0. Результаты последних исследований показывают, что гели из высокоэтерифицированных пектинов могут стабилизироваться в результате возникновения водородных связей и гидрофобных взаимодействий.

Низкоэтерифицированные пектины могут образовывать гели в отсутствие сахаров, но требуют присутствия бивалентных катионов (например Са2+). Добавка ионов кальция вызывает образование кальциевых мостиков, соединяющих молекулы пектина. Низкоэтерифицированный пектин менее чувствителен к рН, чем стандартные пектиновые гели – для нормальных пектинов область рН 2,7 – 3,5, оптимум – 3,2. Гели этого типа используют в бессахарных или низкосахарных диетических кремах и желе. Хотя гелеобразование низкоэтерифицированного пектина и не требует сахара, добавление 10 – 20% сахарозы дает возможность улучшить структуру геля, так как без сахара (или других пластификаторов) эти гели имеют тенденцию быть хрупкими и менее эластичными, чем из обычного пектина. Кроме отмеченных выше факторов на желирующие свойства пектина влияют также молекулярная масса – с ее увеличением возрастает сила геля.

 




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 291; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.