Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Как управлять жидкими кристаллами

Анизотропия физических свойств ЖК

 

Поскольку основным структурным признаком жидких кристаллов является наличие ориентационного порядка, обусловленного анизотропной формой молекул, то естественно, что все их свойства, так или иначе, определяются степенью ориентационного упорядочения. Количественно степень упорядоченности жидкого кристалла определяется параметром порядка S, введенным В.И. Цветковым в 40-х годах формула 1.

Легко понять, что в полностью разупорядоченной изотропно-жидкой фазе S = 0, а в полностью твердом кристалле S = 1. Параметр порядка жидкого кристалла лежит в пределах от 0 до 1.

Именно существование ориентационного порядка обусловливает анизотропию всех физических свойств жидких кристаллов. Так, анизотропная форма молекул ЖК определяет появление двойного лучепреломления (Dn) и диэлектрической анизотропии (De), величины которых могут быть выражены следующим образом:

 

Dn||= n|| – n^ и De||= e||– e^ (3)

 

где n||, n^ и e||, e^— показатели преломления и диэлектрические постоянные соответственно, измеренные при параллельной и перпендикулярной ориентации длинных осей молекул относительно директора. Значения Dn для ЖК-соединений обычно весьма велики и меняются в широких пределах в зависимости от их химического строения, достигая иногда величины порядка 0,3-0,4. Величина и знак De зависят от соотношения между анизотропией поляризуемости молекулы, величиной постоянного дипольного момента m, а также от угла между направлением дипольного момента и длинной молекулярной осью.

Нагревание жидкого кристалла, понижая его ориентационный порядок, сопровождается монотонным снижением значений Dn и De, так что в точке исчезновения ЖК-фазы при Тпр анизотропия свойств полностью исчезает.

В то же время именно анизотропия всех физических характеристик жидкого кристалла в сочетании с низкой вязкостью этих соединений и позволяет с высокой легкостью и эффективностью осуществлять ориентацию (и переориентацию) их молекул под действием небольших "возмущающих" факторов (электрические и магнитные поля, механическое напряжение), существенно изменяя их структуру и свойства. Именно поэтому жидкие кристаллы оказались незаменимыми электрооптически-активными средами, на основе которых и было создано новое поколение так называемых ЖК-индикаторов.

 

Основой любого ЖК-индикатора является так называемая электрооптическая ячейка, устройство которой изображено на рис. 12. Две плоские стеклянные пластинки с нанесенным на них прозрачным проводящим слоем из окиси олова или окиси индия, выполняющие роль электродов, разделяются тонкими прокладками из непроводяшего материала (полиэтилен, тефлон). Образовавшийся зазор между пластинками, который колеблется от 5 до 50 мкм (в зависимости от назначения ячейки), заполняется жидким кристаллом, и вся "сандвичевая" конструкция по периметру "запаивается" герметикой или другим изолирующим материалом (рис. 12). Полученная таким образом ячейка может быть помешена между двумя очень тонкими пленочными поляризаторами, плоскости поляризации которых образуют определенный угол с целью наблюдения эффектов ориентации молекул под действием электрического поля.

Приложение к тонкому ЖК-слою даже небольшого электрического напряжения (1,5—3 В) вследствие низкой вязкости и внутреннего трения анизотропной жидкости приводит к изменению ориентации жидкого кристалла. При этом важно подчеркнуть, что электрическое поле воздействует не на отдельные молекулы, а на ориентированные группы молекул (домены), состоящие из десятков тысяч молекул, вследствие чего энергия электростатического взаимодействия значительно превышает энергию теплового движения молекул. В итоге жидкий кристалл стремится повернуться таким образом, чтобы направление максимальной диэлектрической постоянной совпало с направлением электрического поля. А вследствие большой величины двулучепреломления Dn процесс ориентации ведет к резкому изменению структуры и оптических свойств жидкого кристалла.


Впервые воздействие электрических и магнитных полей на жидкие кристаллы было исследовано русским физиком В.К. Фредериксом, и процессы их ориентации получили название электрооптических переходов (или эффектов) фредерикса. Один из трех, наиболее часто встречающихся вариантов ориентации молекул показан на рис. 12. а – это планарная ориентация, которая характерна для нематиков с отрицательной диэлектрической анизотропией (De< 0), когда длинные оси молекул параллельны стеклянным поверхностям ячейки.

Рис. 12. Электрооптическая ячейка типа "сандвич" с планарной ориентацией молекул (а) и схемы расположения молекул жидких кристаллов в ячейке: б -гомеотропная и в - твист-ориентация.1 - слой жидкого кристалла. 2 -стеклянные пластинки, 3 -токопроводящий слой, 4 - диэлектрическая прокладка, 5 -поляризатор,6 - источник электрического напряжения.

 

Гомеотропная ориентация реализуется для жидких кристаллов с положительной диэлектрической анизотропией (De> 0) (рис. 12, б). В этом случае длинные оси молекул с продольным дипольным моментом располагаются вдоль направления поля перпендикулярно поверхности ячейки. И наконец, возможна твист-или закрученная ориентация молекул (рис.12, в). Такая ориентация достигается специальной обработкой стеклянных пластинок, при которой длинные оси молекул поворачиваются в направлении от нижнего к верхнему стеклу электрооптической ячейки. Обычно это достигается натиранием стекол в разных направлениях или использованием специальных веществ-ориентантов, задающих направление ориентации молекул.

 

Рис.13 Схема работы ЖК-индикатора на твист-эффекте:а — до включения электрического поля, б — после включения поля,в — семисегментной буквенно-цифровой электрод, управляемый электрическим полем.

 

В основе действия любого ЖК-индикатора лежат структурные перестройки между указанными типами ориентации молекул, которые индуцируются при приложении слабого электрического поля. Рассмотрим, например, как работает ЖК-циферблат электронных часов. Основу циферблата составляет уже знакомая нам электрооптическая ячейка, правда несколько дополненная (рис. 13, а, б). Помимо стекол с напыленными электродами, двух поляризаторов, плоскости поляризации которых противоположны, но совпадают с направлением длинных осей молекул у электродов, добавляется еще располагаюшееся под нижним поляризатором зеркало (на рисунке не показано). Нижний электрод обычно делают сплошным, а верхний - фигурным, состоящим из семи небольших сегментов-электродов, с помощью которых можно изобразить любую цифру или букву (рис.13, в). Каждый такой сегмент "питается" электричеством и включается согласно заданной программе от миниатюрного генератора. Исходная ориентация нематика закрученная, то есть мы имеем так называемую твист-ориентацию молекул (см.рис. 12, в и 13, а). Свет падает на верхний поляризатор и становится плоскополяризованным в соответствии с его поляризацией.

При отсутствии электрического поля (то есть в выключенном состоянии) свет, "следуя" твист-ориентации нематика, меняет свое направление в соответствии с оптической осью нематика и на выходе будет иметь то же направление поляризации, что и нижний поляризатор (см. рис. 13, а). Другими словами, свет отразится от зеркала, и мы увидим светлый фон. При включении электрического поля для нематического жидкого кристалла с положительной диэлектрической анизотропией (De> 0) произойдет переход от закрученной твист-ориентации к гомеотропной ориентации молекул, то есть длинные оси молекул повернутся в направлении, перпендикулярном к электродам, и спиральная структура разрушится (рис. 13, б). Теперь свет, не изменив направления исходной поляризации, совпадающей с поляризацией верхнего поляризатора, будет иметь направление поляризации, противоположное нижнему поляроиду, а они, как видно на рис. 13, б, находятся в скрещенном положении. В этом случае свет не дойдет до зеркала, и мы увидим темный фон. Другими словами, включая поле, можно рисовать любые темные символы (буквы, цифры) на светлом фоне, используя, например, простую семисегментную систему электродов (рис. 13, в).

Таков принцип действия любого ЖК-индикатора. Основными преимуществами этих индикаторов являются низкие управляющие напряжения (1,5-5 В), малые потребляемые мощности (1—10мкВт), высокая контрастность изображения, легкость встраивания в любые электронные схемы, надежность в работе и относительная дешевизна.

Заключение

 

Недавно открыты и интенсивно исследуются жидкокристаллические полимеры, появились полимерные ЖК-сегнетоэлектрики, идет активное исследование гибкоцепных элементоорганических и металлсодержащих ЖК-соединений, образующих новые типы мезофаз. Мир жидких кристаллов бесконечно велик и охватывает широчайший круг природных и синтетических объектов, привлекая внимание не только ученых— физиков, химиков и биологов, но и исследователей-практиков, работающих в самых разнообразных отраслях современной техники (электронике, оптоэлектронике, информатике, голографии и т п.).

 

<== предыдущая лекция | следующая лекция ==>
Лиотропные жидкие кристаллы | Управление, направленное на успех. Организации считаются успешными не по размеру, не по прибыльности, а по способности достигать своей цели
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 713; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.