Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы исследования функций численного анализа




Методы исследования функций классического анализа

 

Методы исследования функций классического анализа представляют собой наиболее известные методы решения несложных оптимальных задач. Обычной областью использования данных методов являются задачи с известным аналитическим выражением критерия оптимальности, что позволяет найти не очень сложное, также аналитическое выражение для производных. Полученные приравниванием нулю производных уравнения, определяющие экстремальные решения оптимальной задачи крайне редко удается решить аналитическим путем, поэтому, как правило, применяют вычислительные машины. Дополнительные трудности при решении оптимальной задачи методами исследования функций классического анализа возникают вследствие того, что система уравнений, получаемая в результате их применения, обеспечивает лишь необходимые условия оптимальности. Поэтому все решения данной системы (а их может быть и несколько) должны быть проверены на достаточность. В результате такой проверки сначала отбрасывают решения, которые не определяют экстремальные значения критерия оптимальности, а затем среди остающихся экстремальных решений выбирают решение, удовлетворяющее условиям оптимальной задачи, т. е. наибольшему или наименьшему значению критерия оптимальности в зависимости от постановки задачи. Методы исследования при наличии ограничений на область изменения независимых переменных можно использовать только для отыскания экстремальных значений внутри указанной области. В особенности это относится к задачам с большим числом независимых переменных (практически больше двух), в которых анализ значений критерия оптимальности на границе допустимой области изменения переменных становится весьма сложным. Метод множителей Лагранжа применяют для решения задач такого же класса сложности, как и при использовании обычных методов исследования функций, но при наличии ограничений типа равенств на независимые переменные. К требованию возможности получения аналитических выражений для производных от критерия оптимальности при этом добавляется аналогичное требование относительно аналитического вида уравнений ограничений. В основном при использовании метода множителей Лагранжа приходится решать те же задачи, что и без ограничений. Некоторое усложнение в данном случае возникает лишь от введения дополнительных неопределенных множителей, вследствие чего порядок системы уравнений, решаемой для нахождения экстремумов критерия оптимальности, соответственно повышается на число ограничений. В остальном процедура поиска решений и проверки их на оптимальность отвечает процедуре решения задач без ограничений. Множители Лагранжа можно применять для решения задач оптимизации объектов с распределенными параметрами и задач динамической оптимизации. При этом вместо решения системы конечных уравнений для отыскания оптимума необходимо интегрировать систему дифференциальных ураавнений. Следует отметить, что множители Лагранжа используют также в качестве вспомогательного средства и при решении специальными методами задач других классов с ограничениями типа равенств, например, в вариационном исчислении и динамическом про гр аммировании. Особенно эффективно применение множителей Лагранжа в методе динамического программирования, где с их помощью иногда удается снизить размерность решаемой задачи. Методы вариационного исчисления обычно ис­пользуют для решения задач, в которых критерии оптимальности представляются в виде функционалов и решениями которых служат неизвестные функции. Такие задачи возникают обычно при статической оптимизации процессов с распределенными парамет­рами или в задачах динамической оптимизации. Вариационные методы позволяют в этом случае свести решение оптимальной задачи к интегрированию системы дифференциальных уравнений Эйлера, каждое из которых является нелинейным диф­ференциальным уравнением второго порядка с граничными усло­виями, заданными на обоих концах интервала интегрирования. Число уравнений указанной системы при этом равно числу неиз­вестных функций, определяемых при решении оптимальной задачи. Каждую функцию находят в результате интегрирования получае­мой системы. Уравнения Эйлера выводятся как необходимые условия экс­тремума функционала. Поэтому полученные интегрированием си­стемы дифференциальных уравнений функции должны быть про­верены на экстремум функционала. При наличии ограничений типа равенств, имеющих вид функ­ционалов, применяют множители Лагранжа, что дает возможность перейти от условной задачи к безусловной. Наиболее значитель­ные трудности при использовании вариационных методов возни­кают в случае решения задач с ограничениями типа неравенств. Заслуживают внимания прямые методы решения задач опти­мизации функционалов, обычно позволяю­щие свести исходную вариационную задачу к задаче нелиней­ного программирования, решить которую иногда проще, чем крае­вую задачу для уравнений

Эйлера.

 

Линейное программирование представляет собой математический аппарат, разработанный для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных. Такие задачи обычно встречаются при решении во­просов оптимального планирования производства с ограниченным количеством ресурсов, при определении оптимального плана пе­ревозок (транспортные задачи) и т. д. Для решения большого круга задач линейного программирова­ния имеется практически универсальный алгоритм — симплексный метод, позволяющий за конечное число итераций находить опти­мальное решение подавляющего большинства задач. Тип исполь­зуемых ограничений (равенства или неравенства) не сказывается на возможности применения указанного алгоритма. Дополнитель­ной проверки на оптимальность для получаемых решений не тре­буется. Как правило, практические задачи линейного программиро­вания отличаются весьма значительным числом независимых пере­менных. Поэтому для их решения обычно используют вычислитель­ные машины, необходимая мощность которых определяется раз­мерностью решаемой задачи.

Принцип максимума применяют для решения задач оптимизации процессов, описываемых системами дифферен­циальных уравнений. Достоинством математического аппарата принципа максимума является то, что решение может определяться в виде разрывных функций; это свойственно многим задачам оптимизации, например задачам оптимального управления объек­тами, описываемыми линейными дифференциальными уравне­ниями Нахождение оптимального решения при использовании принципа максимума сводится к задаче интегрирования системы диф­ференциальных уравнений процесса и сопряженной системы для вспомогательных функций при граничных условиях, заданных на обоих концах интервала интегрирования, т. е. к решению краевой задачи. На область изменения переменных могут быть наложены ограничения. Систему дифференциальных уравнений интегрируют применяя обычные программы на цифровых вычислительных машинах. Принцип максимума для процессов, описываемых дифферен­циальными уравнениями, при некоторых предположениях является и достаточным условием оптимальности. Поэтому дополнительной проверки на оптимум получаемых решений обычно не требуется. Для дискретных процессов принцип максимума в той же фор­мулировке, что и для непрерывных, вообще говоря, несправедлив. Однако условия оптимальности, получаемые при его применении для многостадийных процессов, позволяют найти достаточно удобные алгоритмы оптимизации

Методы нелинейного программирования приме­няют для решения оптимальных задач с нелинейными функциями цели. На независимые переменные могут быть наложены ограни­чения также в виде нелинейных соотношений, имеющих вид ра­венств или неравенств. По существу методы нелинейного програм­мирования используют, если ни один из перечисленных выше ме­тодов не позволяет сколько-нибудь продвинуться в решении оптимальной задачи. Поэтому указанные методы иногда называют также прямыми методами решения оптимальных задач. Для получения численных результатов важное место отводится нелинейному программированию и в решении оптимальных задач такими методами, как динамическое программирование, принцип, максимума и т. п. на определенных этапах их применения. Названием «методы нелинейного программирования» объеди­няется большая группа численных методов, многие из которых при­способлены для решения оптимальных задач соответствующего класса. Выбор того или иного метода обусловлен сложностью вы­числения критерия оптимальности и сложностью ограничивающих условий, необходимой точностью решения, мощностью имеющейся вычислительной машины и т. д. Ряд методов нелинейного програм­мирования практически постоянно используется в сочетании с дру­гими методами оптимизации, как, например, метод сканирования в динамическом программировании. Кро­ме того, эти методы служат основой построения систем автомати­ческой оптимизации — оптимизаторов, непосредственно при­меняющихся для управления производственными процессами.

Динамическое программирование служит эффек­тивным методом решения задач оптимизации дискретных многоста­дийных процессов, для которых критерий оптимальности задается как аддитивная функция критериев оптимальности отдельных ста­дий. Без особых затруднений указанный метод можно распростра­нить и на случай, когда критерий оптимальности задан в другой форме, однако при этом обычно увеличивается размерность отдель­ных стадий. По существу метод динамического программирования представ­ляет собой алгоритм определения оптимальной стратегии управле­ния на всех стадиях процесса. При этом закон управления на ка­ждой стадии находят путем решения частных задач оптимизации последовательно для всех стадий процесса с помощью методов ис­следования функций классического анализа или методов нелиней­ного программирования. Результаты решения обычно не могут быть выражены в аналитической форме, а получаются в виде таб­лиц. Ограничения на переменные задачи не оказывают влияния на общий алгоритм решения, а учитываются при решении частных за­дач оптимизации на каждой стадии процесса. При наличии ограни­чений типа равенств иногда даже удается снизить размерность этих частных задач за счет использования множителей Лагранжа.

Применение метода динамического программирования для оп­тимизации процессов с распределенными параметрами или в зада­чах динамической оптимизации приводит к решению дифферен­циальных уравнений в частных производных. Вместо решения таких уравнений зачастую значительно проще представить непре­рывный процесс как дискретный с достаточно большим числом стадий. Подобный прием оправдан особенно в тех случаях, когда имеются ограничения на переменные задачи и прямое решение дифференциальных уравнений осложняется необходимостью учета указанных ограничений. При решении задач методом динамического программирования, как правило, используют цифровые вычислительные машины обла­дающие достаточным объемом памяти для хранения промежуточ­ных результатов решения, которые обычно получаются в таблич­ной форме.

Геометрическое программирование - есть метод решения одного специального класса задач нелинейного программирования, в которых критерий оптимальности и ограничены задаются в виде позиномов - выражений, представляющих собой сумму произведений степенных функций от независимых перемен­ных. С подобными задачами иногда приходится сталкиваться в проектировании. Кроме того, некоторые задачи нелинейного про­граммирования иногда можно свести к указанному представлению, используя аппроксимационное представление для целевых функций и ограничений.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 469; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.