Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ЧЕТВЕРТОЕ ПОКОЛЕНИЕ КОМПЬЮТЕРОВ




 

Четвертое поколение компьютеров создавалось на БИС и СБИС. Переход к четвертому поколению осуществлялся все 70е годы. Установить более точные границы трудно, так как в различных блоках компьютеров СБИС стали использоваться в разное время.

Высокая степень интеграции БИС, повышенное быстродействие, высокая степень надежности, снижение стоимости, все это позволило значительно уменьшить размеры компьютеров, достигнуть быстродействия порядка сотен миллионов операций в секунду, объем основной памяти достиг десятков Мбайт. Появился новый класс компьютеров — микрокомпьютеры.

Компьютеры стали доступны по цене отдельным пользователям. Это привело к широкому производству персональных компьютеров. В США их выпуск возрос с 1974 по 1978 год с 73 тыс. штук до 3 млн. штук. Характеристики микрокомпьютеров быстро догоняли характеристики миникомпьютеров.

В это время наблюдались такие две тенденции - распределение вычислительных ресурсов и оснащение персональными компьютерами рабочих мест с одной стороны и объединение вычислительных ресурсов для решения общих задач большого объема.

В 1986 году Дэниел Хиллис (Thinking Machines Corp.-Корпорация думающих машин) сделал шаг вперед в создании искуственного интеллекта, он разработал концепцию массового параллелизма, которую воплотил в машине соединений (Connection Machine). Машина использовала 16000 процессоров и могла совершать несколько миллиардов операций в секунду. Каждый процессор имел небольщую собственную память, и был связан с другими процессорами через гибкую сеть, которую пользователи могли изменять, перепрограммируя структуру компьютера.

 

 

Система связей позволяла процессорам передавать информацию и запрашивать помощь других процессоров, как в модели мозга. Используя систему связей, машина могла работать быстрее чем любой другой компьютер при решении задач, которые можно распредилить для параллельного решения на многих процессорах.

Примером отечественных компьютеров четвертого поколения может служить многопроцессорный вычислительный комплекс "Эльбрус". Эльбрус1 имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64Мб. Пропускная способность каналов ввода-вывода достигала 120 Мб/с.

Первый компьютер с таким названием был создан еще в 1978 году под руководством В.С. Бурцева и при участии Бориса Бабаяна, который был одним из заместителей главного конструктора. Основными заказчиками компьютеров "Эльбрус"были, конечно, военные.

Компьютер имел модульную конструкцию и мог включать от одного до десяти процессоров на базе схем средней интеграции. Быстродействие компьютера достигало 15 млн. операций в секунду. Объем оперативной памяти, общей для всех процессоров, составлял до 220 машинных слов или, если использовать принятые сейчас меры, 64 Мб.



Однако наиболее интересной в "Эльбрусе-1" была архитектура. Советский суперкомпьютер стал первой в мире коммерческой ЭВМ, использующей суперскалярную архитектуру. Массовое ее использование за рубежом началось лишь в 1990-ых годах с появлением на сцене процессоров Intel Pentium.

 

В 1978 году в Советском Союзе было начато производство универсальных многопроцессорных комплексов четвертого поколения Эльбрус-2. Эль-брус2 имел производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мегаслов (слово 72 разряда).

 

Поиск путей к рекордной производительности вычислительных систем требует нестандартных решений. В 70е годы архитектура вычислительных машин строилась с использованием различных принципов параллелизма, которые позволяли сделать очередной рывок производительности. От миллиона операций в секунду к десяткам и сотне миллионов.

Основными пользователями советских супер-ЭВМ были организации, которые решали сек-ретные задачи обороны, реализовывали атомную и ядерную программы. Но в 1979 году в стенах Института проблем управления АН СССР (ИПУ) завершается разработка высокопроизводительной вычислительной системы ПС- 2000, предназначавшейся для сугубо мирных нужд.

 

Аббревиатура ПС означает «перестраиваемые структуры». Так называемыми однородными решающими полями — структурами из однотипных процессорных элементов, способных параллельно обрабатывать данные, — в ИПУ начали заниматься в конце 60-х. Лидером этого направления был академик Ивери Варламович Прангишвили.

 

С 1975 года началась разработка вычислительной системы ПС-2000 ис-ключительно собственными силами. В работе приняло участие Северодонецкое научно - промыщленное объединение (НПО) «Импульс».

Замечательно то, что найденные специалистами из ИПУ принципы однородных решающих полей не требовали сверхмощной элементной базы для создания высокопроизводительной параллельной машины. Для ПС-2000 и последовавшей за ней системы ПС-3000 электронная промышленность не выпустила ни одной заказной микросхемы.

При этом вычислительные комплексы ПС-2000 обгоняли дорогостоящие «Эльбрусы», обеспечивая быстродействие до 200 млн. операций в секунду. Проходившие испытания восемь опытных образцов машины продемонстрировали на геофизических задачах суммарную производительность порядка 1 млрд. операций в секунду.

Геофизика была основной сферой применения ПС-2000. Эта мощная машина позволила наконец просчитать залежи данных сейсморазведки, которые в огромных объемах накапливались ежегодно. Доступные вычислительные мощности, в силу ограниченной производительности, просто не успевали их обрабатывать — для этого необходимо было быстродействие раз в сто больше того, что имелось в совокупности. Поскольку такие задачи прекрасно поддавались распараллеливанию, их удалось с большой эффективностью решить на многопроцессорных комплексах ПС-2000.

Были сделаны специальные экспедиционные вычислительные комплексы ЭГВК ПС-2000, отлично приспособленные к работе в условиях геофизических экспедиций, — они не занимали большой площади, потребляли мало энергии и не требовали больших расходов на эксплуатацию.

В ПС-2000 реализована архитектура с одним потоком команд и многими потоками данных (SIMD). Центральным компонентом системы является мультипроцессор, включавший от 8 до 64 одинаковых процессорных элементов. Процессорные элементы обрабатывали множество потоков данных по программе из общего модуля управления (один модуль на каждые восемь элементов).

 

Мультипроцессор состоит из набора однотипных процессорных элементов (ПЭ1, ПЭ2, …, ПЭN), связанных между собой регулярным и магистральным каналом, и общего устройства управления (ОУУ)

Каждый ПЭ, а также ОУУ состоят из нескольких функциональных устройств, включающих самую быструю в компьютере программно доступную регистровую память. Совокупность этих устройств (как в ОУУ, так и всех ПЭ) образует разветвленный конвейерный агрегат с программно конфигурируемыми связями. Каждое функциональное устройство составляет конвейерную ступень. Обмен данными между этими устройствами производится через общий для соседних ступеней регистр.

 

В состав вычислительного комплекса (ВК) ПС-2000 входит мультипроцессор, мониторная подсистема и от одной до четырех подсистем внешней памяти (СВП), обеспечивающих параллельно-асинхронную работу нескольких каналов ввода/вывода в режиме одновременного функционирования многих магнитных носителей информации .

Наиболее полное развитие принципы перестраиваемости получили в следующей разработке ИПУ, системе ПС-3000, которая была закончена к 1982 году. Здесь уже применялась архитектура множества потоков команд и множества потоков данных (MIMD). В ПС-3000 аппаратно реализована динамическая перестраиваемость структуры машины в зависимости от возможностей распараллеливания конкретного вычислительного процесса.

 

В отличие от своей предшественницы ПС-3000 решала в основном управляющие задачи — ее можно было использовать на верхних уровнях иерархических систем управления сложными технологическими процессами и производствами, для прямого управления сложными объектами (например,

атомными реакторами) в реальном времени и для моделирования сложных объектов. Разрабатывалась и следующая система, ПС-3100, которая предназначалась для использования на верхних уровнях управления атомным реактором.

К началу 80-х годов производительность персональных компьютеров составляла сотни тысяч операций в секунду, производительность суперкомпьютеров достигала сотен миллионов операций в секунду. Мировой парк компьютеров превысил 100 млн. Дальнейшее развитие вычислительной техники привело к широкому использованию ее во всех областях человеческой дея-тельности.

Четвертое поколение компьютеров должно быть переходным на пути к компьютерам пятого поколения. Компьютеры пятого поколения предполагалось строить на новой элементной базе, позволяющей реализовать интеллектуальные способности человека. Но новая технология пока не находит развития, идет совершенствование современной технологии производства сверхбольших интегральных схем.

Для реализации интеллектуальных возможностей человека разрабатывают электронные устройства, реализующие функции нейрона (нейрочипы).

Наиболее подходит для реализаций функций нейронов оптическая технология, но несмотря на 20-ти летний опыт развития оптических вычислительных систем, не было достигнуто ожидаемых результатов. Из нейрочипов создают нейроподобные системы, объединяя нейрочипы в сети. Используя высокие вычислительные мощности современных универсальных компьютеров и суперкомпьютеров, создаются программы, эмулирующие работу нейронных цепей. Применяется и смешанный вид нейроподобных вычислительных устройств - программно-аппаратный.

 

 


 





Дата добавления: 2014-01-07; Просмотров: 1424; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.162.136.26
Генерация страницы за: 0.092 сек.