Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры параллельных вычислительных систем




СУПЕРКОМПЬЮТЕРЫ

 

 

· Первый этап (до 1955 г.). За точку отсчета эры ЭВМ принимают 1946 г., когда началась опытная эксплуатация первых образцов подобных машин. Известны такие данные о первой из них: общая масса — 30 т, число электронных ламп — 18 тыс, потребляемая мощность— 150 кВт (мощность, достаточная для небольшого завода), объем памяти — 20 10-разрядных десятичных чисел, время выполнения операций: сложения — 0,0002 с, умножения — 0,0028 с. Числа в ЭВМ вводились с помощью перфокарт и набора на переключателях, а программа задавалась соединением гнезд на специальных наборных полях. Производительность этой гигантской ЭВМ была ниже, чем счет в канцелярском магазине. *

· Ламповые ЭВМ имели большие габариты и массу, потребляли много энергии и были очень дорогостоящими, что резко сужало круг пользователей ЭВМ, а следовательно, объем производства этих машин. Основными их пользователями были ученые, решавшие наиболее актуальные научно-технические задачи, связанные с развитием атомной энергетики, реактивной авиации, ракетостроения и т. п. Увеличению количества решаемых задач препятствовали низкие надежность и производительность ламповых машин, ограниченность их ресурсов и чрезвычайно трудоемкий процесс подготовки, ввода и отладки программ, написанных на языке машинных команд. *

· Повышение быстродействия ЭВМ шло за счет увеличения ее памяти и улучшения архитектуры: использование двоичных кодов для представления чисел и команд, а также размещение их в увеличивающейся памяти ЭВМ упростили структуру процессора и повысили производительность обработки данных. Для ускорения процесса подготовки программ стали создавать первые языки автоматизации программирования (языки символического кодирования и автокоды).*

* (повторение из 1-ой лекции)

Определений суперкомпьютерам пытались давать много, иногда серьезных, иногда ироничных, Кен Батчер предложил такой шуточный вариант:

Суперкомпьютер - это устройство, сводящее проблему вычислений к проблеме ввода/вывода. Производительность персональных компьютеров с процессором Pentium-II/300МГц сравнима с производительностью суперкомпь-ютеров начала 70-х годов, но для своего времени это обычный персональный компьютер.

Суперкомпьютер – это вычислительная система, обладающая предельными характеристиками по производительности среди имеющихся в каждый конкретный момент времени компьютерных систем

Производительность суперкомпьютеров определяется в миллионах (мегафлопс — MFlops), миллиардах (гигафлопс — GFlops), триллионах (терафлопс — TFlors) операций с плавающей точкой в секунду.

Критерий мощности суперкомпьютера на настоящее время установили в США, наложив ограничения на экспорт за границу вычислительных средств, при помощи которых можно проводить численное моделирование ядерных реакций.

Первые суперкомпьютеры появились уже среди компьютеров второго поколения (1955 - 1964), они были предназначены для решения сложных задач, требовавших высокой скорости вычислений. Это LARC фирмы UNIVAC, Stretch фирмы IBM и "CDC-6600“ (семейство CYBER) фирмы Control Data Corporation, в них были применены методы параллельной обработки (увеличивающие число операций, выполняемых в единицу времени), конвейеризация команд (когда во время выполнения одной команды вторая считывается из памяти и готовится к выполнению) и параллельная обработка при помощи процессора сложной структуры, состоящего из матрицы процессоров обработки данных и специального управляющего процессора, который распределяет задачи и управляет потоком данных в системе. Компьютеры, выполняющие параллельно несколько программ при помощи нескольких микропроцессоров, получили название мультипроцессорных систем.

В годы с 1955 по 1961 в США фирмой IBM разрабатывался проект "Stretch", оказавший большое влияние на развитие структуры универсальных компьютеров. В проекте были воплощены все известные к 1960 году структурные принципы повышения производительности, такие как:

¨ совмещение операций, характерное для мультипрограммирования,

¨ разделение времени работы различных блоков и устройств, выполняющих одну команду,

¨ cовмещение во времени подготовки и выполнения нескольких команд одновременно,

¨ параллельное выполнение нескольких независимых программ.

В 1964 году был создан компьютер CDC6600, а в 1969 году - CDC7600, вошедшие в семейство CYBER (см.компьютеры третьего поколения). Для повышения быстродействия в суперкомпьютерах семейства CYBER использовались методы конвейерной и параллельной обработки при помощи процессора сложной структуры, состоящего из матрицы процессоров обработки данных и специального управляющего процессора, который распределяет задачи и управляет потоком данных в системе.

В 1972 году был создан сверхпроизводительный компьютер ILIAC4 (США) с конвейерной архитектурой, включавшей 64 процессора. Это был наиболее крупный проект среди компьютеров третьего поколения. Разрабатывали компьютер сотрудники Илинойского университета во главе с Д.Слотником. Компьютер был предназначен для решения системы уравнений в частных производных при помощи итерационных разностных схем. Решение такой задачи может быть ускорено в 64 раза по сравнению с последовательным вычислением на однопроцессорном компьютере. Максимальное быстродействие компьютера составляло 200Млн.операций в секунду.

Приведем параметры суперкомпьютера CONVEX C-3440. Суперкомпьютер включал в себя 4 векторных процессора, 1 процессор ввода-вывода, объем физической памяти составлял 512 Мб, объем виртуальной памяти до 4 Гб, объем памяти на жестких дисках 4,5 Гб, 9-дорожечный накопитель на магнитной ленте, интерфейс Ethernet (10 Мбит/сек), 16-канальный мультип-лексор. Пиковая производительность суперкомпьютера составляла 800 Мфлоп/сек.

 

До середины 80-х годов в списке крупнейших производителей суперкомпьютеров в мире были фирмы Sperry Univac и Burroughs. Первая известна, в частности, своими мэйнфреймами UNIVAC-1108 и UNIVAC-1110, которые широко использовались в университетах и государственных организациях.

Мэйнфреймы Burroughs от B5000 до B78xx широко применялись в коммерческих, банковских, приложениях. Фирма выпускала и совместимые с ними миникомпьютеры, которые использовались и в нашей стране. Фирма Burroughs вообще отличалась своими разработками в области компьютерных архитектур, ею были разработаны суперкомпьютеры Illiac-IV и BSP.

 

Основанный на транзисторах UNIVAC 1108 поддерживал до трёх процессоров и более 1 Мб памяти. В качестве устройств памяти использовались интегральные микросхемы. Широко использовались в университетах и государственных организациях.
Один из первых непреднамеренных вирусов был связан с этим компьютером.
На нем существовала игра Pervading Animal. При помощи наводящих вопросов игра пыталась определить имя животного, задуманного играющим.

В программе была предусмотрена возможность самообучения: если ей не удавалось отгадать задуманное человеком название, игра предлагала модернизировать себя и ввести дополнительные наводящие вопросы. Модифицированная игра записывалась поверх старой версии, а также копировалась и в другие директории — для того, чтобы сделать результат работы доступным и другим пользователям. В результате, через некоторое время все директории на диске содержали копии Pervading Animal.

После слияния Sperry Univac и Burroughs объединенная фирма UNISYS продолжала поддерживать обе линии мэйнфреймов с сохранением совместимости снизу вверх в каждой. Это является ярким свидетельством непреложного правила, поддерживавшего развитие мэйнфреймов - сохранение работоспособности ранее разработанного программного обеспечения.

В 1989 году была пущена в опытную эксплуатацию векторно-конвейерная супер-ЭВМ “Электроника ССБИС” разработки Института проблем кибернетики РАН и предприятий электронной промышленности. Производительность в однопроцессорном варианте составляла 250 MFLOPS, передача данных между массовой интегральной памятью и оперативной памя-тью осуществлялась под управлением специализированного процессора, реализующего произвольные методы доступа. Разработку супер-ЭВМ вели В.А. Мельников, Ю.И. Митропольский, В.З. Шнитман, В.П. Иванников.

В 1990 году в Советском Союзе была введена в эксплуатацию векторно-конвейерная супер-ЭВМ "Эльбрус 3.1" на базе модульных конвейерных про-цессоров (МКП), разработанная в ИТМ и ВТ имени С.А. Лебедева группой конструкторов, в которую входили Г.Г. Рябов, А.А. Соколов, А.Ю. Бяков.

Производительность суперкомпьютера в однопроцессорном варианте составляла 400 MFLOPS.

 

В 1996 году японская компания Fujitsu пополнила класс суперкомпьютеров новой машиной VPP700, позволяющей подключать до 256 рабочих мест, имеющую производительность 500 миллиардов операций с плавающей точкой в секунду. Этот векторный компьютер был предназначен для научных и технических расчетов. Размер дисковой памяти мог варьироваться от 4 до 512 Гбайт.

 

В мире суперкомпьютеров известна и компания Intel. Многопроцессорные компьютеры Paragon фирмы Intel в семействе многопроцессорных структур с распределенной памятью стали такой же классикой, как компьютеры фирмы Cray Research в области векторно-конвейерных суперкомпьютеров.

С переходом к распределенным вычислениям и к технологии клиент- сервер ведущие позиции мэйнфреймов были подорваны, но на первых порах распределенная обработка информации оказалась не дешевле, как это предполагалось, а дороже централизованной. Это связано с большими затратами на обслуживание распределенных систем. С другой стороны, переход к идеологии клиент-сервер является сложным процессом, и далеко не все фирмы- потребители смогли с ним сразу справиться. Дороговизна мэйнфреймов и большие затраты на поддержку их системы жизнеобеспечения были их основными недостатками.

Переход на КМОП-технологию вызвал резкое уде-шевление этих компьютеров. Одновременно резко снизились их требования к площадям, системам электропитания и охлаждения. В результате многие мэйнфреймы стали работать в оффисном окружении. Учитывая необходимость в поддержке большого количества работающих на мэйнфреймах при-ложений, можно понять, почему позиции мэйнфреймов на рынке средств вычислительной техники на какое-то время стабилизировались.

При построении суперкомпьютеров обладающих производительностью порядка 1,5 млрд. операций в секунду используются масштабируемые архитектуры с массовым параллелизмом. Суперкомпьютеры строятся как многопроцессорные системы или системы, объединяющие в единую множество высокопроизводительных вычислительных систем.

К данному классу можно отнести компьютеры Intel Paragon, IBM SP1, Parsytec, IBM SP2 и CRAY T3D/T3E. К этому же классу можно отнести и сети обычных компьютеров, которые все чаще рассматривают как дешевую альтернативу дорогим суперкомпьютерам.

Применение унифицированных узлов позволяет легко масштабировать вычислительную систему. Каждый узел компьютера CRAY-T3D включает в себя два процессорных элемента (processing element), сетевой интерфейс (network interface), средство поблочной пересылки (block transfer engine). В частности система CRAY-T3D может быть построена на 32, 64, 128, 256, 512, 1024, или 2048 процессорных элементах.

 

При построении многопроцессорной системы может использоваться одна из нескольких архитектур, определяющих схему соединения процессорных элементов между собой, схему связей с устройствами ввода/вывода и блоками памяти.

Симметричная мультипроцессорная обработка (SMP) является архитектурой, в которой несколько процессоров разделяют доступ к единственной общей памяти и работают под управлением одной копии операционной системы. В этом случае задания могут распределяться для выполнения на разных процессорах в пределах имеющихся ресурсов, допуская одновременное выполнение нескольких процессов. Главным преимуществом архитектуры SMP, по сравнению с другими подходами к реализации мультипроцессорных систем, является возможность использования ранее разработанных программных приложений.

 

Современные системы SMP архитектуры состоят, как правило, из нескольких однородных серийно выпускаемых микропроцессоров и массива общей памяти, подключение к которой производится либо с помощью общей шины, либо с помощью коммутатора

Этот фактор существенно сокращает время выхода на рынок и готовность традиционных коммерческих приложений на системах SMP по сравнению с другими мультипроцессорными архитектурами. Основной недостаток архитектуры в том, что такие системы нуждаются в высокой пропускной способности шины памяти. Требования к пропускной способности шины возрастают пропорционально числу процессоров, объединенных в систему и ограничивают возможность наращивания вычислительной мощности системы. Поэтому целесообразно использовать кэш память второго уровня (внешние для процессора буферные запоминающие устройства) для уменьшения нагрузки на шину.

Построение кластерных конфигураций из SMP-компьютеров не дает хороших показателей масштабирования, обычно ограничиваются небольшим числом компьютеров в кластере. Ограничение масштабируемости связано с фиксированной пропускной способностью связывающих гиперузлы магистралей. Более масштабируемые кластероподобные системы можно строить с применением сетевых архитектур, таких как Tandem ServerNet.

Эта система состоит из нескольких процессорных узлов и узлов ввода/вывода, объединенных друг с другом системной сетью ServerNet. Базовым элементом сети ServerNet является маршрутизатор, выполненный в виде отдельной заказной СБИС. Для обеспечения отказоустойчивости предполагается возможность построения двух независимых подсетей ServerNet: X и Y.. Одной из дополнительных возможностей новой архитектуры является наличие специальной шины когерентности, допускающей подключение до четырех ЦП. Эта шина обеспечивает согласованное состояние общей для нескольких процессорных узлов памяти и их кэшей.

 

Архитектура cc-NUMA является одним из путей улучшения масштабируемости по сравнению с традиционным SMP-подходом. Перспективное на-правление развития МРР-систем с архитектурой сс-NUMA было предложено фирмой Convex (ныне подразделение Hewlett Packard), выпустившей многопроцессорные компьютеры Exemplar SPP1000, SPP1200, SPP1600 и серверы S и X-класса (SPP2000). Особенность архитектуры cc-NUMA в использовании физически распределенной оперативной памяти как единой, но логически разделяемой.

 

Convex Exemplar SPP1000:

 

Компанией SGI разработана новая высокомодульная масштабируемая система с высокой пропускной способностью (архитектура S2MP). Особенности архитектуры S2MP, реализованы в компьютерах SGI Origin и Onyx2.

 

Основным строительным блоком в архитектуре S2MP является узел. В компьютерах Origin 2000 узлы реализованы в виде отдельных плат, каждая из которых содержит 1 или 2 64-разрядных RISC-микропроцессора.

Системы массового параллелизма выходят на первые позиции, в том числе по производительности. МРР-системы создаются на базе высокопроизводительных стандартных микропроцессоров RISC-архитектуры - тех же, что используются в рабочих станциях и серверах.

Фирмой IBM был разработан суперкомпьютер Deep Blue, как система массового параллелизма. Это, был первый компьютер, победивший чемпиона мира по шахматам. Компьютер Deep Blue разрабатывался первоначально в университете Carnegie Mellon студентами Фенг-хсиунгом Хсу и Марри Кампбеллом на чипсете, использовавшемся в компьютере Sun 3/160.

Проект был принят к исполнению фирмой IBM в 1989, когда Кампбелл пришел работать в фирму. В этом году впервые против чемпиона мира Гарри Каспарова играл компьютер Deep Though. Каспаров легко обыграл компьютер в двух партиях.

 

К февралю 1997 года была разработана новая шахматная программа и значительно увеличена скорость вычислений компьютера, и тогда "Голубому гиганту" удалось победить Каспарова со счетом 3.5:2.5.

Летом 1995 г. два токийских университета продемонстрировали специализированный (предназначенный для моделирования задач астрофизики) суперкомпьютер GRAPE-4, собранный из 1692 микропроцессоров и обошедшийся всего в 2 млн. долл. Он первым в мире преодолел порог в 1 трлн. оп./с с результатом 1,08 Тфлопс.

 

Через 15 месяцев компания Cray Research сообщила, что модель Cray T3E-900, насчитывавшая 2048 процессоров, побила рекорд японцев и достигла 1,8 Тфлопс.

 

 

 

В 1997 г. появились сообщения о проекте моделирования ядерного взрыва в Лос-Аламосской лаборатории - Программа ASCI (Accelerated Strategic Computing Initiative)

¡ 1996, система ASCI Red, построенная Intel, производительность 1 TFlops,

¡ 1999, ASCI Blue Pacific от IBM и ASCI Blue Mountain от SGI, производительность 3 TFlops,

¡ 2000, ASCI White с пиковой производительностью свыше 12 TFlops (реально показанная производительность на тесте LINPACK составила на тот момент 4938 GFlops)

Система ASCI Red фирмы Intel (США, 1997) имеет предельную (пиковую) производительность 1,8 триллионов операций в секунду (1,8 Тфлопс). Система ASCI Red включает в свой состав 9624 микропроцессоров PentiumPro с тактовой частотой 200 Мгц, общий объем оперативной памяти 500 Гбайт и имеет стоимость 50 млн. Долларов.

 

ASCI White:

ú Система с 512-ю симметричными мультипроцессорными (SMP) узлами, каждый узел имеет 16 процессоров,

ú Процессоры IBM RS/6000 POWER3 с 64-х разрядной архитектурой и конвейерной организацией
с 2 устройствами по обработке команд с плавающей запятой и 3 устройствами по обработке целочисленных команд, они способны выполнять до 8 команд за тактовый цикл и до 4 операций с плавающей запятой за такт, тактовая частота 375 MHz,

ú Оперативная память системы – 4 TB,

ú Емкость дискового пространства 180 TB

 

 

Лидер 2002- 2004 г.г. Earth Simulator содержит 640 процессорных узлов, соединенных между собой через высокоскоростной переключатель. В состав узла входят 8 векторных арифметических процессоров, работающих над общей для каждого узла оперативной памятью, коммуникационный процессор и процессор для операций ввода/вывода. Оперативная память каждого узла разделена на 2048 банков и имеет объем 16 Гбайт. Пиковая производительность одного арифметического процессора равна 8 Гфлопс, поэтому пиковая производительность всего компьютера, объединяющего 640*8=5120 процессоров, равна 40 Тфлопс.

 

На японском суперкомпьютере Earth Simulator смоделировали рост Вселенной за последние 13 миллиардов лет. Астрофизики проследили за возникновением современных космологических структур - галактик и их кластеров - из газовых "пузырей", которыми космос был наполнен спустя 300 миллионов лет с момента Большого Взрыва.

 

Система BlueGene:

Первый вариант системы представлен в 2004 г. и сразу занял 1 позицию в списке Top500.

Расширенный вариант суперкомпьютера (ноябрь 2007 г.) по прежнему на 1 месте в перечне наиболее быстродействующих вычислительных систем:

ú 212992 двухядерных 32-битных процессоров PowerPC 440 0.7 GHz,

ú пиковая производительность около 600 TFlops, производительность на тесте LINPACK – 478 TFlops

 

 

Физики из Аргоннской национальной лаборатории (Argonne National Laboratory) в Чикаго воспользовались суперкомпьютером IBM Blue Gene/P, чтобы смоделировать экстремальную физику взрыва сверхновой звезды.

В итоге ученые получили очень интересные визуализированные модели, изображения которых могут представлять не обязательно научную, но и художественную ценность. Абстракции с физическим смыслом.

 

 

Компьютерный снимок сверхновой типа Ia (подкатегория цефеид) сразу после момента детонации. Количество высвобождаемой энергии эквивалентно 10^27 водородных бомб, каждая по 10 мегатонн в тротиловом эквиваленте. Эта громадная энергия делает взрывы подобных звезд одними из самых ярких во вселенной, их также используют как индикаторы расстояний в космологии.

 

 

Продолжение процесса. Сам взрыв длится менее 5 секунд, но суперкомпьютер использовал более 160 тыс. процессоров и 22 млн. вычислительных часов для его симуляции.

Система RoadRunner:

RoadRunner является наиболее быстродействующей вычислительной системой (2008) и первым в мире суперкомпьютером, производительность которого превысила рубеж 1 PFlops (1000 TFlops): пиковая производительность около 1700 TFlops, производительность на тесте LINPACK – 1026 TFlops, 12960 процессоров IBM PowerXCell 8i и 6480 двухядерных процессоров AMD Opteron.

 

Jaguar Cray XT5-HE, обладающий приблизительно на 70% большей вычислительной мощностью по сравнению с Roadrunner, делит вместе с Kraken помещения Национальной лаборатории Оак-Ридж. Впервые суперкомпьютер был продемонстрирован в прошлом году, но его дополнительные 181000 ядер вступили в строй только в нынешнем.

В отличие от большинства американских государственных проектов подобного масштаба Cray XT5-HE не находится под контролем военных. Основное предназначение предыдущих суперкомпьютеров Министерства энергетики, в том числе Roadrunner, - это моделирование различных явлений в области атомной энергетики и ядерных взрывов. Первый номер Top500 также занимается климатическими изменениями, изучением структуры воды и другими научными задачами.

Согласно тесту Linpack, 224162 ядра продемонстрировали производительность 1,759 Пфлопс. Пиковая теоретическая мощность – 2,3 Пфлопс. Каждый вычислительный узел содержит два шестиядерных процессора Opteron с тактовой частотой 2,6 ГГц, 16 Гб памяти и роутер SeaStar 2+ с пропускной способностью 57,6 Гб/с.

 

 

Симуляция течений углекислого газа с учётом их поглощения почвой и растениями во время восхода Солнца над Восточной Европой. Поглощение CO2 показано в зелёных и белых цветах и имеет наибольшую силу в тропической зоне. Красный цвет обозначает высвобождение парникового газа в атмосферу. По мере наступления тёмного времени суток лидировать в объёме выбросов начинает территория центральной Африки.


 

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1568; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.074 сек.