Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кольцо целостности

 

Пусть – произвольное кольцо. Как было показано ранее, для любого элемента выполняются равенства:

 

.

 

Отсюда следует, что нулевой – 0 и единичный – элементы являются различными элементами кольца.

Если для элемента в кольце существует обратный элемент , то он единственный, для которого выполняется условие .

Единичный элемент кольца является обратным для самого себя: .

Из равенства следует, что элемент также является обратным для самого себя.

Нулевой элемент 0 кольца не имеет обратного элемента, поскольку , для любого элемента .

Определение. Элемент , для которого в кольце существует, и притом только единственный, обратный элемент , называют обратимым или делителем единицы.

Кольцо целых чисел является самым простым примером коммутативного кольца, в котором только 1 и –1 являются делителями единицы .

Теорема. Множество всех делителей единицы кольца является группой по умножению.

Доказательство. Действительно, если , т.е. являются делителями единицы кольца , то

и, следовательно,

.

А это означает, что и также являются делителями единицы и, следовательно, содержатся в множестве . Поэтому множество является группой по умножению.

Определение. Группа называется группой делителей единичного элемента кольца .

Так как для любого элемента выполняется равенство , то по определению делителей элементов кольца, каждый элемент является делителем нуля. В теории колец для произвольных элементов используют следующее определение делителей нуля.

Определение. Элементы называются делителями нуля, если , а ; при этом называют левым, а – правым делителем нуля.

Пример. 1. В кольце классов вычетов по mod m существуют делители нуля:

в : ,

в : .

 

2. В кольце квадратных матриц второго порядка также существуют делители нуля:

пусть ,

тогда .

Определение. Кольцом (областью) целостности называется коммутативное кольцо без делителей нуля.

Пример. 1. – кольцо целых чисел является кольцом целостности.

2. Кольцо является кольцом целостности в том и только в том случае, если – простое число.

Рассмотрим произвольное кольцо . Если , и , т.е. кольцо не содержит делителей нуля, то такое кольцо называется телом. Более строго.

Определение. Кольцо K, в котором для всех отличных от нуля элементов существуют обратные, называется телом.

Тело не содержит делителей нуля, т.е. если и – тело, то, если .

Это означает, что отличные от нуля элементы тела образуют полугруппу по умножению.

Более того, т.к. тело содержит единичный элемент и для каждого отличного от нуля элемента в теле существует обратный элемент, то элементы тела, отличные от нуля образуют группу по умножению.

Примеры. 1. Тело рациональных чисел . Действительно, если , где .

Если .

Важно, чтобы обратный элемент .

Для любого целого числа, например , обратный существует и равен , но он не принадлежит .

 

2. Тело вещественных чисел.

 

3. Тело комплексных чисел.

Кольцом целостности, с которым наиболее часто приходится встречаться, является кольцо целых чисел .

В теории колец особую роль играют кольца, которые по своим свойствам достаточно близки к кольцу целых чисел. В частности, для этих колец можно развить теорию делимости, аналогичную теории делимости целых чисел. Эти кольца получили название колец главных идеалов. Пусть – кольцо целостности с единицей – коммутативное кольцо без делителей нуля, в котором понятие правого и левого делителя элемента совпадают. Определение делимости элементов этого кольца можно сформулировать так:

Определение. Если для элементов кольца целостности в существует такой элемент , что , то говорят, что элемент делится на , и пишут или делит , или .

 

Из определения делимости двух элементов вытекают следующие свойства делимости в кольце целостности:

1.

2.

3.

4.

Эти свойства являются распространением на кольцо целостности соответствующих свойств делимости в кольце целых чисел.

5. Каждый элемент делится на любой делитель единицы . Действительно, если – делитель единицы, то и – также делитель единицы, а это означает, что , тогда и, следовательно, .

6. Если делится на , то делится и на , где – любой делитель единицы.

Действительно, из равенства следует равенство и, следовательно, .

7. Каждый элемент из делителей и , где – любой делитель единицы, является делителем и другого.

Действительно, из равенства следует равенство , а из равенства – равенство . Следовательно, если , то , и наоборот.

В дальнейшем будем рассматривать элементы кольца целостности , отличные от нуля.

Определение. Элементы кольца целостности называются ассоциированными, если каждый из них является делителем другого:

. (55)

Из равенства (55) следует, что . Отсюда, сократив обе части полученного равенства на , получаем . Следовательно, и являются делителями единицы. Таким образом, если и – ассоциированные элементы, то , где – некоторый делитель единицы. С другой стороны, какой бы мы не взяли делитель единицы , элементы и ассоциированные между собой, поскольку .

Определение. Элементы кольца целостности называются ассоциированными, если , где – некоторый делитель единицы.

Пример. В кольце целых чисел ассоциированными являются пары чисел .

Если и ассоциированные элементы кольца целостности, то . Отсюда следует, что – главный идеал, порожденный элементом является подмножеством – главного идеала, порожденного элементом и наоборот:

Это означает, что два ассоциированных элемента , кольца целостности порождают один и тот же главный идеал.

Пусть – произвольные элементы кольца целостности .

Определение. Элемент называется общим делителем элементов и , если каждый из этих элементов делится на .

По свойству 5 все делители единицы кольца целостности являются общими делителями элементов и . Но у элементов и могут быть и другие общие делители. Введем понятие наибольшего общего делителя (НОД) этих элементов. Определение НОД двух целых чисел, по которому НОД называют наибольший из общих делителей, распространить на кольцо целостности нельзя, т.к. в произвольном кольце целостности нет отношения порядка. Однако можно ввести и другое определение НОД двух чисел и , а именно: НОД двух чисел и называется такой общий делитель этих чисел, который делится на любой другой их общий делитель. Именно это определение НОД и распространяется на элементы кольца целостности .

Определение. Наибольшим общим делителем двух элементов кольца целостности называется такой элемент , обозначаемый символом и обладающий двумя свойствами:

1. ;

2. .

Замечание. Ясно, что вместе с свойствами 1., 2. Обладает любой ассоциированный с ним элемент. Действительно, если – НОД элементов , то формально это записывается в виде или . Если также и , то элементы и делятся друг на друга и, следовательно, являются ассоциированными. С другой стороны, если , то, очевидно, , где – любой делитель единицы. Таким образом НОД элементов определяется с точностью до сомножителя , который является делителем единицы.

С учетом этого замечания к свойствам 1., 2. Наибольшего общего делителя добавляются следующие:

3. ;

4. ;

5. ;

6. .

Свойство 6. позволяет распространить понятие НОД на произвольное конечное число элементов кольца целостности .

По аналогии с вводится дуальное понятие наименьшего общего кратного элементов кольца целостности определенного с точностью до ассоциированности и обладающее также двумя свойствами:

;

.

В частности, полагая , получаем, что .

Теорема. Если для элементов кольца целостности существуют и . Тогда

а) ;

б) , .

Доказательство. Утверждение а) вытекает непосредственно из определения . Для доказательства б) необходимо убедиться, что элемент , определенный равенством , обладает свойствами 1., 2. НОД. Действительно, из , следовательно , откуда после сокращения на , допустимого в любом кольце целостности , имеем , т.е. . Аналогично , т.е. . Этим доказано свойство 1. Для доказательства свойства 2. Представим . Положим . Тогда – общее кратное элементов и . Согласно свойству для некоторого , откуда , т.е. и , что и требовалось доказать.

Определение. Элементы кольца целостности называются взаимно простыми, если они не имеют общих делителей, отличных от делителей единицы, т.е. если НОД.

Пусть – произвольный делитель единицы, и – произвольный элемент кольца целостности . Тогда из условия следует, что . Это означает, что все элементы ассоциированные с элементом , и все делители единицы являются делителями элемента . Их называют тривиальными или несобственными делителями элемента . Все делители отличные от и , если такие существуют в , называются нетривиальными, или собственными делителями элемента .

Пример. В кольце целых чисел тривиальными делителями числа 10 являются числа и , а нетривиальными – числа и .

Определение. Элемент кольца целостности называется неразложимым, или простым, если он не является делителем единицы и не имеет нетривиальных делителей; элемент называется разложимым, или составным, если он имеет нетривиальные делители.

Другими словами, элемент называется разложимым, если его можно представить в виде произведения двух нетривиальных делителей ; элемент – называется неразложимым, если его нельзя представить в виде произведения двух нетривиальных делителей.

Пример. В кольце целых чисел неразложимыми являются числа т.е. простые числа и противоположные простым. Все остальные числа отличные от , – разложимы.

Неразложимые элементы обладают следующими свойствами:

· если элемент кольца целостности неразложимый, то и любой ассоциированный с ним элемент также неразложимый;

· если – произвольный элемент кольца целостности , а – неразложимый элемент из , то или делится на , или и – взаимно простые элементы из .

Действительно, первое свойство следует непосредственно из свойства 7 делимости элементов кольца целостности. Второе свойство докажем следующим образом. Если НОД, то как делитель неразложимого элемента , является либо некоторым делителем единицы , либо элементом вида . В первом случае элементы и взаимно простые, во втором – делится на .

Определение. Кольцо целостности называется кольцом с однозначным разложением на простые множители (или факториальным кольцом), если любой элемент из можно представить в виде:

, (46)

где обратный элемент, а – простые элементы (не обязательно попарно различные), причем из существования другого такого разложения

следует, что и при надлежащей нумерации элементов и будет

,,…,,

где – обратные элементы в . Допуская в разложении (46) , мы принимаем соглашение, что обратимые элементы в кольце целостности также имеют разложение на простые множители. Ясно, что если – простой, а обратный элемент в , то ассоциированный с элемент тоже простой.

Пример. В кольце целых чисел с обратимыми элементами и отношение порядка дает возможность выделить положительное простое число из двух возможных простых элементов .

Теорема. Пусть – произвольное кольцо целостности с разложением на простые множители. Однозначность разложения в (факториальность ) имеет место тогда и только тогда, когда любой простой элемент , делящий произведение , делит по крайней мере один из сомножителей или .

Доказательство. Пусть . Если

разложения на простые множители, а – кольцо с однозначным разложением, то из равенств следует, что элемент ассоциирован с одним из или , т.е. делит или .

Обратно, установим однозначность разложения в , где или . Рассуждая по индукции, допустим, что разложение всех элементов из с числом простых множителей единственно (с точностью до порядка сомножителей и их ассоциированности).

Докажем теперь это для любого элемента , который может быть разложен на простых сомножителей. Именно, пусть

(47)

– два разложения элемента с .

Условие теоремы, примененное к дает нам, что должен делить один из элементов . Без ограничения общности (это вопрос нумерации) будем считать, что . Но – простой элемент, поэтому , где – обратимый элемент. Используя закон сокращения в , получаем из (41) равенство

. (48)

В левой части равенства (42) стоит произведение простых сомножителей. По предположению индукции и оба разложения отличаются лишь порядком простых элементов, снабженных, возможно, какими–то обратимыми сомножителями.

Замечание. В произвольном кольце целостности элемент вообще не обязан допускать разложение типа (40). Более интересным является тот факт, что имеются кольца целостности, в которых разложение на простые множители хотя и возможно, но не является однозначным, т.е. условия теоремы, кажущиеся тривиальными не всегда выполняются.

Пример. Рассмотрим кольцо целостности , где .

Норма каждого отличного от нуля элемента – целое положительное число. Если элемент обратим в , то , откуда . Это возможно лишь при . Таким образом в , как и в 1, обратимыми элементами являются только . Если , то . Так как , то при заданном число множителей не может неограниченно расти. Следовательно, разложение на простые множители в возможно. Вместе с тем число 9 (да и не только оно) допускает два существенно различных разложения на простые множители:

.

Неассоциированность элементов 3 и очевидна. Далее, . Поэтому из разложения для или с необратимыми следовало бы , т.е. , что невозможно, поскольку уравнение с неразрешимо. Этим доказана простота элементов 3 и .

<== предыдущая лекция | следующая лекция ==>
Кольцо многочленов | Кладинг для активных элементов
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1879; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.