Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Плавание 65





                           
   
   
   
     
 
 
 
 
 
   
     
       
 
 
 



на каждую точку пластины. Это давление неодинаково по всей длине пластины, так как линейная скорость движения отдель­ных точек пластины различна. Скорость увеличивается пр^ямо пропорционально радиусу вращения. Согласно известной фор­муле гидродинамического сопротивления R = cS(pv2)/2, сопро­тивление воды возрастает пропорционально квадрату скорости движения тела; в данном случае — пластины. Отметим: как ус­тановлено гидромеханикой, сопротивление воды при враща­тельном движении пластины возрастает пропорционально квад­рату длины пластины, т.е. квадрату длины радиуса вращения. Из гидромеханики известно, что равнодействующая всех сил сопротивления воды вращательному движению данной пласти­ны, имеющей равное сечение и одинаковую форму по всей

длине, располагается на расстоянии 0,75 длины от центра вращения.

Обратимся к рис. 17. На этой же пластине, на расстоянии 0,25 от ее сво­бодного конца, построим вектор равнодействую­щей всех сил. По правилу параллелограмма, разло­жим ее на составляющие: силу тяги Т, направлен­ную горизонтально впе-


движений руками в большей мере влияет на дыхание и общую ко­ординацию движений, определя­ет темп и ритм плавания.

Для простоты рассуждения вначале вместо движений рука­ми или рукой (так как их движе­ния идентичны), вращающейся в плечевом суставе, рассмотрим вращательное движение пласти­ны в воде вокруг одной непод­вижной оси (точки О).

 

Обратимся к рис. 16. Соглас­но третьему закону Ньютона, с какой силой пластина давит на воду, с такой же силой вода давит в противоположном направлении


ред, и подъемную силу Р, направленную вертикально вверх. Рассмотрим теперь, как будет изменяться соотношение этих сил при вращении пластины. Рис. 17 показывает, что в начале вра­щательного движения подъемная сила Р превосходит силу тяги Т. По мере вращения пластины сила Р уменьшается, а сила Т возрастает. В положении 45° они уравновешиваются, т. е. стано­вятся практически равны друг другу. С этого момента сила тяги (Т) стремительно возрастает, превосходя подъемную. Наконец, наступает такой момент (90°), когда равнодействующая будет рав­на силе тяги. В этом положении подъемная сила Р равна 0.

Когда пластина пройдет вертикальное положение, картина расположения сил существенно изменяется. Сила тяги Г по мере продвижения пластины теперь уже уменьшается, а взамен подъемной силы появляется топящая Р1.

Теперь уже становится ясно, что данные закономерности можно с известной долей осторожности перенести на движение рук пловца. Вместе с тем надо понимать, что движение пласти­ны и движение руки — не одно и то же. Прежде всего отличие от жесткой пластины в том, что рука по всей своей длине имеет раз­ную форму и разное сечение. Развернутая ладонь испытывает зна­чительно большее сопротивление при движении в воде, нежели плечо или предплечье, имеющие цилиндрическую форму.

Рука подвижна в своих сочленениях — плечевом, локтевом, лучезапястном суставах, в суставах кисти и пальцев. Это по­зволяет помещать рабочие плоскости в наиболее выгодное для создания силы тяги положение. К примеру, сгибая руку в лу­чезапястном суставе в первой половине гребка и разгибая во вто­рой, пловец удерживает ладонь в положении, относительно пер­пендикулярном к поверхности воды, что позволяет наилучшим образом использовать сопротивление воды для эффективной опоры. Кроме того, оптимальное положение кисти на выходе из воды уменьшит влияние топящей силы.

Поддерживающие силы, возникающие на рабочей плоскости руки, играют важную роль в начальной части гребка. Они по­могают сохранить высокое и обтекаемое положение тела и наи­более эффективно использовать для движения вперед инерци­онные силы, силы тяжести отдельных звеньев тела, тяговые силы от движения ногами или от гребка другой рукой (к приме­ру, в кроле).

Возникает вопрос: нельзя ли при плавании так построить дви­жения, чтобы свести к минимуму потери в тяговых усилиях? Оказывается, в какой-то степени это сделать можно: необходи­мо согнуть руку в локтевом и лучезапястном суставах и основ-


                       
   
 
 
     
   
 
 
 
   
   
 
 
 

ные гребущие элемен­ты руки (кисть и пред­плечье) поставить в плос-кость, максимально перпендикулярную на­правлению движения. Это принципиально возможно лишь тогда, когда удерживается вы­сокое положение локтя и гребок выполняется согнутой рукой.

Нами рассмотрено наиболее простое дви-

жение вокруг одной неподвижной оси (точка О или во втором случае — плечевой сустав). Фактически все выглядит еще слож­нее. Дело в том, что конечности пловца совершают не одно, а два движения:

а)в плечевом суставе;

б) поступательное движение вперед со скоростью, равной ско­рости движения тела пловца в воде.

Как принято в механике, назовем движение руки по отно­шению к туловищу пловца относительным, а движение, полу­ченное в результате сложения поступательного движения плов­ца вперед и относительного движения руки, — абсолютным. Это наглядно проиллюстрировано на рис. 18.

При таком подходе меняется представление о распределении давления на гребущей поверхности. Оказывается, давление наблюдается не на всей длине руки, а только на кисти, пред­плечье и примерно половине плеча. Именно эти части в абсо­лютной системе отсчета выполняют движение назад и создают тяговые усилия. Вольно или невольно плечевой сустав будет всегда двигаться вместе с туловищем, телом пловца, а вместе с ним — и проксимальная часть плеча. Следовательно, они не только не создают силы, но и тормозят движение. Поэтому нельзя злоупотреблять известным приемом, используемым квалифицированными пловцами, так называемым «наплывом», ибо чем больше (и продолжительнее) будет «наплыв», тем дольше большая часть руки будет оказывать тормозящее дей­ствие. Вероятно, весь смысл этого приема сводится лишь к тому, чтобы создать мощную опору и поддержать горизонтальное (от­носительно воды) высокое положение после проноса рук по воздуху, когда уменьшается воздействие подъемных сил, а так-


же для последующего эффективного приложения усилий в во­де — в рабочем движении.

Исследуя эффективность гребка, надо учитывать не только скорость движения отдельных рабочих звеньев руки, но и их форму и площадь сечения при проекции на поперечную верти­кальную плоскость (сечение Миделя). Кисть, к примеру, по сво­ей форме приближается к обычной пластине, а плечо и пред­плечье — к цилиндру или усеченному конусу.

Если взять среднюю, наиболее эффективную, часть гребка, то оказывается, что скорость движения ладони в среднем в 2—3 раза выше скорости движения предплечья. Следовательно, со­противление воды движению ладони может почти в 10 раз пре­взойти сопротивление движению предплечья. Выигрыш же в сопротивлении, с точки зрения разных форм кисти и предпле­чья, еще в 3—4 раза больше. В целом благодаря большей пло­щади рабочей поверхности и большей скорости движения сила тяги, создаваемая на ладони, больше в 25—30 раз! Давление воды на кисть составляет около 70 % от суммарного давления по всей руке.

Таким образом, кистьглавный элемент движителя, его основная рабочая плоскость.

Учитывая все предыдущие особенности, теперь можно рас­смотреть элементарные (простейшие, основные) требования к механизму гребковых движений руками.

Сказанное позволяет еще раз заключить, что нельзя злоупот­реблять «наплывом», задерживаться в этом положении, так как возникает излишнее торможение поступательному движению тела пловца и долго отсутствует сила тяги. Отсюда — следую­щее правило. В тех способах плавания, в которых подготови­тельная часть движения выполняется над поверхностью воды путем проноса руки, следует говорить о каком-то оптимуме вкладывания руки в воду. В первом приближении, вероятно, рука должна входить в воду сверху вниз-вперед под острым уг­лом по отношению к поверхности воды, не далеко и не близко, ибо в первом случае (далеко) появится излишнее напряжение мышц, а это крайне нежелательно для последующего эффек­тивного гребка; во втором случае, если вкладывать руку под большим углом к поверхности, резко возросшее сопротивление (рука вместе с телом пловца перемещается только вперед) исказит всю структуру движения. Рабочее движение должно выполняться с нарастающей горизонтальной скоростью. Бла­годаря этому обстоятельству увеличивается опора на воду, со­ответственно — сила тяги.


Чтобы сообщить массе тела как можно большее количество движения (количество движения равно произведению массы тела на его скорость), нужен достаточно высокий импульс силы (произведение силы на время ее действия). Значит, надо избрать такую траекторию движения движителя (и главного его элемен­та — кисти), которая бы обеспечивала продолжительный кон­такт рабочей поверхности с водой. Чтобы оценить, как влияет продолжительность эффективной части гребка (той части, ко­торая создает силу тяги) на скорость пловца, необходимо учи­тывать обтекаемость пловца, его массу и целый ряд других фак­торов. Для исследователей это серьезнейшая проблема.

Такой продолжительный контакт может быть обеспечен при движении по кривой траектории. Анализ показывает, что в трехмерной системе координат траектория принимает вид вин­товой линии. Движения руками и ногами при плавании чаще всего имеют вращательный и возвратно-вращательный харак­тер (со сменой направления на обратное). При этом направле­ние движения кисти меняется плавно, что очень важно: как уже отмечалось, увеличивается время контакта, а рабочим поверх­ностям движителя, особенно кисти, такая траектория позволя­ет постоянно контактировать с невозмущенными неподвижны­ми слоями воды, что способствует эффективной опоре. Путь, который кисть проходит в воде, раза в три больше, чем путь, проходимый локтем. Скорость движения кисти в отдельные моменты гребка превышает 4 м/с.

Траектория движения кисти в основной части гребка обес­печивает создание необходимой величины опорной реакции, направление которой в основной части приближается к направ­лению движения пловца. Если вспомнить приведенную выше формулу реакции опоры и принять во внимание тот факт, что площадь кисти для данного пловца — величина постоянная, то силу реакции практически можно увеличить за счет двух фак­торов: а) повышения скорости движения кисти; б) более рацио­нальной ориентации кисти относительно потока, т.е. придания ей оптимального угла атаки (коэффициент С в формуле — без­размерный, зависящий от формы, профиля кисти и ее ориента­ции относительно потока).

Угол атаки кисти во время гребка во многом определяет эф­фективность движения. Относительно траектории своего соб­ственного движения кисть ориентирована во время гребка, как правило, под острым углом. Таким образом она практически все­гда взаимодействует с косонаправленным потоком жидкости, все время как бы накрывая его сверху своей внутренней поверх-


ностью. Очевидно, такие касательные взаимодействия с пото­ком создают более устойчивую опору. В свою очередь, такой кон­такт дает субъективно гораздо большие ощущения и возмож­ность более точного управления движением.

Если кисть участвует в создании непрерывной опоры о воду (70 %), то функция плеча заключается в передаче через систе­му жестких звеньев результатов этого контакта с водой на тело пловца с целью его движения в заданном направлении. Жест­кая система звеньев необходима для рациональной передачи сил от одного звена к другому. Система опорных звеньев может уко­рачиваться и удлиняться, изменять взаимное расположение. В конечном итоге это дает возможность вывести рабочие звенья движителей в оптимальное для создания опоры положение и обес­печить все условия для качественного рабочего движения. Такие условия обеспечиваются главным образом оптимальным сгиба­нием руки в локтевом суставе и высоким положением локтя.

Рука начинает гребок полностью или почти полностью вы­прямленной в локтевом суставе. Основная часть гребка должна выполняться с оптимальной степенью сгибания и разгибания руки в локтевом суставе. Спортсмены опытным путем подбира­ют такую степень сгибания руки, которая позволяет:

— придать рабочим звеньям руки рациональную форму и необходимую жесткость при опоре о воду;

— быстрее вывести руку в положение, наиболее выгодное для приложения сил к опоре, и сохранить это положение на возмож­но большем участке гребка; обеспечить оптимальную по фор­ме, направлению и амплитуде траекторию движения кисти;

— выполнить гребок со скоростью, соответствующей инди­видуальным возможностям пловца и ритму всех его движений, а главное — достичь соответствия сил мышечной тяги силам реакции воды, возникающим на рабочих плоскостях кисти.

Первая половина гребка во всех способах плавания должна выполняться с так называемым высоким положением локтя. В способах кроль на груди, дельфин, брасс рука начинает гре­бок энергичным движением кисти и предплечья наружу, а за­тем внутрь, со сгибанием в локтевом суставе. Плечо при этом должно выполнить небольшой поворот внутрь, но остаться как бы немного фиксированным в направлении вперед. Это позво­ляет удержать локоть в высоком положении, оставить его раз­вернутым в сторону (но не назад-вниз).

В данной части гребка движение кисти по отношению к лок­тю — ведущее. Все это дает возможность уже в начале гребка опереться о воду под более эффективным углом и придать опор-


ным звеньям необходимую жесткость, что важно для передачи сил опорной реакции с кисти на плечо.

Высокому положению локтя и оптимальной жесткости руки способствуют небольшой разворот кисти ладонью наружу в фазе входа руки в воду и захвата воды. Эти элементы техники взаи­мосвязаны. Например, у одних пловцов при плавании кролем на груди небольшой поворот кисти и предплечья ладонью на­ружу — следствие высокого положения локтя, другие пловцы специально разворачивают руку в такое положение, чтобы удер­жать локоть выше кисти. Кроме того, небольшой разворот руки ладонью наружу в начальный момент гребка обеспечивает ра­бочей плоскости руки необходимый угол атаки по отношению к встречному потоку воды. Подобное опережающее движение кисти по отношению к локтю с одновременным вращением пле­ча внутрь и удерживанием локтя развернутым в сторону (но не назад) выполняется и в кроле на спине.

Дыхание

Плавание существенно отличается от всех других видов цик­лической спортивной деятельности. Главное отличие заключа­ется в том, что при плавании человек совершает работу в гори­зонтальном положении, а лицо, как правило, скрыто в воде, что значительно затрудняет дыхание. Те сложные рефлектор­ные механизмы, которые обеспечивают дыхательную функцию на суше, в воде оказываются малопригодными. Так, обычное дыхание на воздухе двухактное: акт вдоха плавно и последова­тельно сменяется актом выдоха; при плавании же паттерн ды­хания иной: вдох — быстрый и энергичный, выдох — актив­ный и удлиненный; задержка дыхания на вдохе; возможно на­рушение ритма вследствие непредвиденных обстоятельств (на­пример, при попадании воды в трахею); взаимосвязь дыхания и темпа плавания. Это, в свою очередь, требует перестройки ре-гуляторных механизмов системы дыхания. Формирование и закрепление специфического режима дыхания при плавании происходит на протяжении длительного процесса обучения и не­посредственно спортивной тренировки пловца. Обучение пра­вильному дыханию при плавании имеет большое значение и является важнейшей задачей при овладении спортивными способами плавания. Правильно говорят: «Кто не умеет пра­вильно дышать, тот не умеет плавать».

Общая продолжительность дыхательного цикла при скорос­ти плавания 0,9 м/с составляет в среднем 2,1 с. С увеличением


скорости до 1,7 м/с продолжительность цикла уменьшается до 1,5—1,8с; фаза вдоха длится в среднем 0,3 с, продолжитель­ность выдоха — 1,2—1,5 с; при этом пловец успевает вдохнуть 2—3 л воздуха. Объем вдоха пловца, таким образом, не уступа­ет объему вдоха бегуна, лыжника или гребца.

Такое своеобразие дыхания связано с особенностями биоме­ханики плавательных локомоций. Вдох при плавании кролем на груди связан с поворотом головы, а при плавании брассом и дельфином — с подъемом головы вверх; при этом акт вдоха выступает как помеха в биомеханике движения. Чем быстрее будет произведен вдох, тем меньше эта помеха. Продолжитель­ность выдоха обусловлена прежде всего тем, что при таком ва­рианте обеспечиваются лучшая плавучесть, высокое положение тела, меньшее (при прочих равных условиях) сопротивление.

Частота дыхания при плавании строго детерминирована ча­стотой плавательных движений и увеличивается в соответствии с возрастанием частоты гребковых движений, так как при пла­вании наблюдается теснейшая взаимосвязь двигательных и дыхательных циклов.

Плавание кролем на спине происходит при частоте дыхания до 64 цикл./мин, а при других способах плавания частота дыхания колеблется в пределах 40 цикл./мин. В зоне макси­мальных скоростей плавания (1,7—1,9 м/с) частота дыхания составляет 55—60 цикл./мин. Оптимальное соотношение дыхательных и двигательных циклов в соревновательной прак­тике — 1:1. Такое соотношение, по мнению И.Н. Солопова, га­рантирует высокую экономичность дыхания и наибольшую эф­фективность обеспечения организма кислородом.

Величина дыхательного объема зависит от способа плавания. Наблюдения за одними и теми же пловцами при проплывании ими дистанциий разными способами показали, что наиболее глубокое дыхание отмечается при плавании на спине.

Компрессорное действие воды снижает бронхиальную про­водимость, жизненную емкость легких (ЖЕЛ) и максимальную вентиляцию легких (МВЛ). ЖЕ Л и МВЛ снижаются в среднем на 5—10 %. На 6—8 % возрастает резервный объем вдоха, а резервный объем выдоха снижается. Сопротивление току воз­духа по дыхательным путям (легочной проводимости) при ак­тивном плавании возрастает примерно на 50 % по сравнению с состоянием покоя и требует усиления активности дыхатель­ных мышц.

Особенность плавания еще и в том, что это — циклический вид спортивной деятельности (можно — мышечной деятельно-


 




держка дыхания. Этими же авторами разработаны модельные ха­рактеристики рациональной техники спортивного плавания, где в качестве ведущего звена приняты дыхательные движения.

При плавании способом брасс мощный «поздний» вдох осу­ществляется во время совмещенных подготовительных движе­ний ногами и руками. Короткому и эффективному вдоху спо­собствует освобождение грудной клетки от функций опоры для рук во время гребка. Удар ногами сочетается с задержкой ды­хания на вдохе с натуживанием. Захват и первая часть подтя­гивания согласуются с задержкой дыхания на вдохе без нату-живания. Совпадение выдоха с окончанием подтягивания и фазой отталкивания — наиболее мощными частями гребка ру­ками — повышает эффективность рабочего движения. Оконча­ние выдоха происходит с появлением рта на поверхности.

При плавании двухударным дельфином «затянутый по­здний» вдох начинается с появлением локтевых суставов на поверхности воды и заканчивается не ранее окончания второй трети проноса рук по воздуху. Вдох завершается достижением дыхательного объема около 2 л. Акцентированный удар нога­ми во время входа рук в воду и захвата производится на задер­жке дыхания с натуживанием. Выдох «взрывом» согласуется с самой энергичной фазой гребка руками или отталкиванием и вторым ударом ногами.

При плавании способом кроль на спине продолжительный вдох начинается с выходом одной руки из воды для проноса, вторая рука в это время выполняет гребковое движение. Вдох заканчивается перед входом руки в воду. Следующая за вхо­дом задержка дыхания совпадает с нахождением обеих рук в воде, когда одна рука находится в начале захвата, а другая выходит из воды.

При плавании способом кроль на груди «затянутый» вдох начинается в конце фазы отталкивания и выхода из воды. Следующая за вдохом пауза переходит в натуживание, совпа­дая с окончанием захвата и началом подтягивания. «Взрывной» выдох сопровождает завершающее рабочее движение рукой.

Таким образом, рассмотренные модельные характеристики согласования дыхания и движения позволяют увеличить мощ­ность физической работы не только за счет рационального согла­сования дыхательных и локомоторных движений, но и за счет снижения кислородной стоимости дыхания. Расчеты показыва­ют, что с повышением КПД дыхательных мышц и при оптими­зации структуры дыхательного цикла можно «сэкономить» око­ло 100 мл/мин кислорода из общего расхода на вентиляцию. Это


позволит сократить время плавания приблизительно на 0,5 с на дистанции 100м. Такой расчет вполне реален, поскольку кис­лородная стоимость дыхания при плавании, к примеру, брас­сом или дельфином составляет около 0,7 и 0,9 л/мин соответ­ственно. При этом расход кислорода на дыхание приблизитель­но равен 25 % от общего его поступления в организм.

С учетом всего сказанного нужен нетрадиционный подход при рассмотрении функции дыхания в плавании.

Общая согласованность движений и дыхания

Общая согласованность движений и дыхания — основа тех­ники плавания. Под техникой следует понимать систему дви­жений, которая позволяет пловцу наиболее полно реализовать свои двигательные задачи в условиях специфики водной среды.

Для анализа и оценки наиболее важны такие параметры, как: темп, ритм, амплитуда, направление движений, взаимодей­ствие внешних, внутренних сил, точность, последовательность движений, их экономичность, реализация силовых возможно­стей, устойчивость к воздействию различных факторов. Все это в конечном итоге определяет эффективность движений, или тех­нику плавания.

Общая согласованность движений прежде всего должна быть направлена на поддержание устойчивого положения тела плов­ца в воде. Это — первое, главное и непременное условие. Чтобы перемещаться в заданном направлении, нужна оптимальная ра­бочая поза.

На практике такое условие реализуется согласованными дви­жениями рук и ног. Впервые это обнаружил наш соотечествен­ник Л. Геркан (1931): «Простейшая форма — на каждый взмах руки работает противоположная нога, — благодаря чему полу­чается устойчивое положение тела в воде».

Так, в кроле на груди картина согласования оказывается сле­дующей:

— в двухударной координации, в момент окончания удара ногой, противоположная рука оказывается в положении 27—36° к поверхности;

— в четырехударной координации движение рукой имеет два промежуточных положения: 20 и 93°;

— в шестиударной координации положение рук в момент окончания удара ногами оказывается в 13, 55, 110°.

Такие строгие соотношения в движениях руками и ногами свидетельствуют об устойчивости структуры движений в попе-


 




ременных координациях, а это — необходимое условие обеспе­чения и сохранения устойчивого положения тела пловца в воде и его эффективного продвижения.

Совершенно определенной оказывается структура движений и в тех способах плавания, в которых используются одновре­менные координации; например, в брассе и дельфине. Разуме­ется, это не случайность, а причинно обусловленная необходи­мость. Вспомним, как в двухударном дельфине, когда руки проносятся над поверхностью, тело пловца тонет, несмотря даже на то, что подготовительное движение непродолжительное; тре­буется компенсаторный удар на входе рук в воду, который бы выровнял положение тела пловца относительно поверхности воды, позволил бы качественно выполнить захват и подтягива­ние — подготовил бы самую эффективную часть гребка — от­талкивание.

Выражением согласованности движений является внутри-цикловая скорость. Она изменяется в пределах одного цикла, возрастая после окончания очередного гребка и снижаясь меж­ду гребками. Даже при плавании кролем пловец продвигается вперед неравномерно. В брассе и дельфине колебания скорости еще большие.

Естественно, чем больше скорость плавания приближается к равномерной, тем экономичнее плавание. Проблема равномер­ности движения во многом решается последовательной переда­чей количества движений с одного звена на другое. К примеру, в том же брассе: когда руки заканчивают активное гребковре движение, оно подхватывается ногами. Аналогичные примеры можно обнаружить в любом из других способов плавания.

Разница между максимальным и минимальным значения­ми скорости внутри цикла при плавании кролем на груди и на спине составляет в среднем 0,5—0,8 м/с; в брассе она мо­жет достигать 1,5 м/с.

Внутрицикловые колебания скорости неизбежны, поскольку они обусловлены структурой движений пловца. Однако стремить­ся уменьшить влияние этого фактора нужно, и это возможно.

Согласованность обеспечивается правильным чередованием работы мышц. Напряжение мышц в рабочем периоде движения сменяется их расслаблением в подготовительном периоде.

Согласованность отмечается в работе разных мышечных групп. Так, например, в дельфине движение начинается на линии плеч, увеличивается по амплитуде на мышцах туловища и заканчива­ется ногами. Для дельфина характерно высокое положение тела. Именно поэтому согласованные движения нужны прежде всего как


компенсаторные. Примером такой компенсации может служить пер­вый удар: руки выполнили пронос над водой, в это время тело плов­ца чуть «утонуло», и требуется компенсаторный удар ногами, вы­равнивающий положение тела пловца.

Отмечается еще одна удивительная закономерность: если ноги выполняют рабочее движение, руки в этот момент — под­готовительное, и наоборот.

В конечном итоге все закономерности согласованных дей­ствий способствуют более длительному и равномерному дей­ствию силы тяги внутри цикла, обеспечивают оптимальное положение тела пловца в воде, лучшее протекание восстанови­тельных процессов в мышцах.

Оптимальные соотношения в работе двигательного аппара­та способствуют правильному дыханию. Дыхание осуществля­ется в момент наиболее высокого положения в цикле. Такой момент наступает после активных движений руками.

Анатомо-физиологические особенности организма и техника плавания

Поскольку система условий при организации двигательных действий пловца строго специфична и жестко-определенно воз­действует на организм пловца, столь же определенна и его от­ражательная деятельность. В плавании четко просматривается взаимосвязь между структурой и функцией организма, формой и содержанием двигательного действия.

Известно, что эффективность гидродинамической ситуации пловца определяется главным образом двумя крупными состав­ляющими — силами тяги и силами сопротивления; коэффици­ент полезного действия в поступательных движениях пловца составляет в спортивных способах плавания 5—7 %. По сути, эффективность движ'ений пловца зависит от мощности систем энергообеспечения и гидродинамических особенностей его тела.

Особенности гидродинамики в первую очередь зависят от антропометрических данных пловца. Среди этих морфофунк-циональных признаков выделены те, которые определяют ус­пех в том или ином способе плавания, а их отсутствие существен­но лимитирует спортивные достижения. Сравнивая модельные характеристики представителей разных специализаций, необ­ходимо отметить, что в целом комплекс признаков, лимитиру­ющих спортивные достижения в одних и тех же способах пла­вания и на одних и тех же дистанциях, у мужчин и женщин


 




совпадает. Особенно ярко это проявляется у специализирую­щихся в плавании на спине и в брассе.

Кроль 100 м. Скорость плавания на этой дистанции тесней­шим образом взаимосвязана с признаками, характеризующи­ми силовые возможности спортсмена (длина и вес тела; площадь сечений: дельтовидной мышцы, плеча, предплечья, бедра), а также с длиной руки и кисти.

400 м в/с. Скорость плавания на этой дистанции зависит от подвижности плечевых суставах, ЖЕЛ, длины верхнего от­резка, длины ноги и длины корпуса. Кроме того, морфологи­ческими предпосылками успеха являются малый обхват талии и уплощенная форма грудной клетки. Специализирующиеся на этой дистанции пловцы — это спортсмены выше среднего рос­та, имеющие меньший по сравнению со спринтерами вес и, со­ответственно, меньшее количество мышечной, костной и жи­ровой тканей, сглаженный рельеф мышц.

800, 1500 м. Скорость плавания определяется величиной ЖЕЛ, подвижностью в голеностопных суставах, длиной верх­него отрезка и корпуса, шириной кисти, индексами отношения веса тела к росту и ширины таза к росту. Стайеры пропорцио­нальны. У них длинные предплечье, кисть, голень, сглаженный рельеф мускулатуры, вследствие чего тело имеет хорошо обте­каемую форму.

Плавание на спине. Здесь скорость обусловлена показателя­ми длины тела, подвижности в плечевых и голеностопных сус­тавах, ЖЕЛ, обхватом плеча и индексом отношения веса тела к росту. Установлена взаимосвязь спортивного результата в пла­вании этим способом с силовыми показателями мышц верхних конечностей и плечевого пояса верхних конечностей. Отрица­тельная связь спортивного результата с возрастом свидетель­ствует о том, что успеха на этой дистанции добиваются более легкие юные спортсмены.

Плавание дельфином. Спортивный результат в плавании дельфином определяется такими морфофункциональными показателями, как вес тела, длина туловища, обхват грудной клетки, подвижность в плечевых и голеностопных суставах. Скорость плавания тесно связана с силовой подготовленностью, показателями которой являются площади сечений: плеча, дель­товидной мышцы, бедра. Длина верхнего отрезка, длина ноги, площади тазобедренного сечения и сечения талии имеют отрицательную взаимосвязь со спортивным результатом.

Плавание брассом. Скорость плавания в брассе связана с та­кими морфофункциональными признаками, как подвижность


в коленном и голеностопном суставах, обхват и площадь сече­ния бедра, длина плеча, бедра и верхнего отрезка. Отмечается отрицательная связь с шириной плеч.

Комплексное плавание. Предпосылками для достижения вы­соких спортивных результатов в этом виде плавания являются длина тела, бедра, индекс отношения ширины таза к показате­лю роста. Лучшие результаты показывают спортсмены высоко­го роста с хорошей подвижностью в голеностопном, коленном и плечевом суставах. У них сильные длинные руки, что подтвер­ждают величины площадей сечений плеча, предплечья и руки.

Успеха здесь могут добиваться юные спортсмены.

Необходимым условием технического мастерства пловца яв­ляется мощность гребковых движений, а основу мощности, как известно, составляет сила. Не случайно высококвалифи­цированные пловцы — это мощные атлеты с развитой муску­латурой, прежде всего плечевого пояса. Активное участие в плавательных локомоциях принимают следующие мышцы плечевого пояса: широчайшая мышца спины, большая круг­лая, большая грудная, дельтовидная, трапециевидная, двугла­вая и трехглавая мышцы плеча, плече-лучевая, локтевой сги­батель запястья, прямая и косые мышцы живота (по данным электромиографии).

Однако явно недостаточно просто иметь высокие силовые показатели, самое главное — «утилизировать силовые возмож­ности в воде».

Требуется тонкая настройка нервно-мышечного аппарата, способность тонко дифференцировать движения по силе, скоро­сти, направлению. Мастерство пловца теснейшим образом свя­зано с особенностями сократительных и релаксационных харак­теристик различных мышечных групп, принимающих активное участие в локомоциях пловцов. Уровень силовой подготовлен­ности пловцов тесно связан с особенностями телосложения, и в первую очередь с тотальными размерами (ростом и весом), обхватными характеристиками и составом тела. Пловцы, име­ющие преимущество в этих характеристиках, обладают более высоким уровнем силы. Величина веса, процентное содержание активной массы, характеризующее также силовые возможнос­ти пловца, прямо взаимосвязаны со скоростью плавания.

Специфика функциональной мышечной топографии зависит от плавательной специализации. В ряде случаев высоких спортивных результатов пловцы добиваются за счет хороших гидродинамических качеств при не столь высоком уровне раз­вития силы отдельных мышечных групп.


 




Особенности строения и формы женского организма как нельзя лучше свидетельствуют о взаимосвязи анатомических признаков и достижений в плавании.

Хотя суставы относятся к пассивной части двигательного аппарата, именно от их формы и величины зависят такие гео­метрические свойства движений сегментов тела человека, как направление и амплитуда. Многообразие направлений и форм движений — сгибание и разгибание, отведение и приведение, ротация (пронация, супинация) — обусловлено главным обра­зом степенью свободы суставов. Сам объем движения сегмен­тов тела определяется подвижностью в суставах и зависит от величины суставной поверхности, от состояния мышц и связок. Подвижность в суставах и сила мышц имеют отрицательную взаимосвязь.

Выделяют три вида подвижности в суставе: свободную, ак­тивную, пассивную.

Объем свободной подвижности предполагает естественные плавные и экономные движения, при которых активные силы мышц действуют не в течение всего периода выполнения дви­жения, а только в определенных границах, на остальных же участках движения осуществляются по инерции. Такое эконо­мичное движение наблюдается, например, при подготовитель­ных движениях рук при плавании кролем на груди и дельфи­ном. При расслабленных мышцах движения в суставе могут осуществляться под действием гравитационных сил за счет са­мой тяжести сегмента тела. Например, хорошо заметны свобод­ные, не фиксированные движения в дистальных отделах верх­них конечностей (кисти) при проносе рук по воздуху.

При передвижении в воде спортсмен обычно использует сво­бодную подвижность в суставе, которая характеризуется зна­чительными индивидуальными отличиями. При измерении же подвижности в суставах, как правило, определяют объем актив­ной подвижности, которая увеличивается за счет максималь­ного усилия участвующих в движении мышц и растяжимости мышц-антагонистов. При циклических движениях в воде та­кой вид подвижности нерационален, неэкономичен, так как требует компенсаторных движений и вызывает излишние за­траты энергии. Только тыльное сгибание в голеностопном сус­таве перед началом движения ног при плавании брассом требу­ет активной подвижности.

При плавании кролем на груди, на спине и дельфином тре­буется пассивная подвижность в голеностопных суставах при выполнении удара ногами.


Кроме объема подвижности выделяется еще амплитуда уп­ругости. Она связана с механизмом торможения в суставе.

Сам способ плавания, техника его выполнения, а также раз­личные ее варианты в значительной мере базируются на возмож­ностях суставов, обусловленных их анатомическим строением. В конечном итоге эти особенности проявляются у пловцов в виде специальной гибкости. Но даже внутри одного способа плава­ния индивидуальные особенности могут существенно влиять на технику плавания. При слабой подвижности голеностопно­го сустава снижается эффективность работы ногами (мы уже строили «параллелограммы» на стопе), вследствие этого укора­чивается момент скольжения в цикле в результате потери в дли­не шага, недостаток приходится компенсировать темпом. Практика свидетельствует, что при недостаточной подвижнос­ти голеностопных суставов начинающие пловцы не «чувствуют опоры» в брассе и потому выполняют движение с грубейшими ошибками.

Лучшая подвижность в суставах, особенно в плечевом и го­леностопном, отмечается у представителей наиболее сложных в техническом отношении способах плавания — на спине и в дельфине. В плавании брассом решающее значение имеет подвижность в коленном и голеностопном суставах.

Сложный комплекс качеств и свойств, определяющих ус­пешность в плавании, может быть представлен тремя основны­ми факторами: строением тела, специфическим восприятием пловца (перцепцией), его работоспособностью. Понятно, что любой квалифицированный пловец характеризуется опреде­ленной степенью развития всех специфических для плавания признаков, однако часто доминирует влияние одного из ука­занных признаков. Это и определяет своеобразный тип адапта­ции пловца к спортивной деятельности (соматический, сенсор­ный, смешанный). *

Плавание — сложное высококоординированное движение. Это — локомоция (перемещение в пространстве всего тела). Работают сотни мышц. Уже только поэтому взаимодействует огромное количество сил: благодаря многосуставности подвиж­ных цепей тела и богатству их степеней свободы между всеми частями их цепей: стопами, голенями, бедрами, плечами, пред­плечьями и т.д. Ситуация еще более осложняется тем, что пла­вательные локомоции выполняются в условиях гипогравита-ции, в среде с высокой плотностью и в горизонтальном положении. Все это требует сложнейшей системы управления движениями.


 




Важнейшей составляющей системы управления является состояние нервной системы пловца, очень тонкая и специфич­ная деятельность органов чувств. Такие свойства нервной сис­темы, как ее чувствительность, реактивность, лабильность и динамичность нервных процессов, способствуют формирова­нию перцепции пловца, лежащей в основе так называемого «чувства воды». У пловцов высокий уровень кожной и вибро­тактильной чувствительности. Более того, имеется взаимосвязь отдельных характеристик анализаторов не только с успешнос­тью в плавании в целом, но и с плавательной специализацией. Известно, что в воде естественно ухудшаются временные и про­странственные характеристики движений, затруднено диффе­ренцирование усилий и управление ими. Пловец, не умеющий правильно реализовать свои ощущения или менее тонко вос­принимающий изменения в водной среде, плывет нерациональ­но, у него быстрее создается излишнее мышечное напряжение. Пловец, обладающий повышенной чувствительностью специ­фических для плавания анализаторов, достигает большего эффекта двигательных действий. Такое «профессиональное» для плавания свойство нервной системы, как лабильность, позволяет пловцу быстрее воспринимать следующие друг за другом раздражения.

В воде, в условиях гипогравитации, при повторении однотип­ных циклов сокращения и расслабления работающих мышц формируется ритмическая структура движений. В ее основе лежит способность выполнять двигательные действия в точном соответствии с ритмической структурой раздражений, идущих от различных проприорецептивных анализаторов. Известно, что по показателям чувства ритма пловцы значительно опере­жают не занимающихся спортом и сравнимы с профессиональ­ными танцорами и музыкантами. Потребность в быстром анализе и постоянной коррекции своих действий в связи с из­менением ощущений в воде обусловливает необходимость того, чтобы пловец высокого класса обладал значительным интеллек­туальным потенциалом, несмотря на сравнительно простые и в какой-то мере однообразные плавательные движения.

Из вышеизложенного становится очевидным, насколько важ­ны определенные психофизиологические характеристики для плавания. Разные его виды (стили) соответственно предъявляют несколько различные требования к отдельным психофизиологи­ческим характеристикам. Например, наиболее высокие требова­ния предъявляются к чувствительности анализаторных систем в кроле на спине, при этом следует помнить о существовании


обратной связи между абсолютной чувствительностью нервной системы и силой ее нервных процессов. Это означает, что среди индивидуумов с высокочувствительной нервной системой час­то встречаются лица с ослабленной силой нервных процессов. Доказано, что лица с относительно слабой, но высокочувстви­тельной нервной системой лучше приспособлены к длительной и монотонной работе. Такие чаще встречаются среди стайеров.

Повышенной возбудимостью нервной системы, подвижнос­тью, динамичностью нервных процессов отличаются многие брассисты.

Наибольшей чувствительность кожного анализатора наделе­ны спортсмены, имеющие так называемый пикнический тип конституции. Напротив, пловцы с выраженными атлетически­ми признаками (атлетическая конституция) — наименее чув­ствительны. Напомним, что лицам пикнической конституции больше присущи признаки гинекоморфии (строения тела по женскому типу), что отражается на гидродинамических свой­ствах их тела, его пропорциях, качественно-количественных характеристиках жироотложения, особенностях кожного по­крова. Спортсменам атлетической конституции, наоборот, при­сущи признаки андроморфии (строения тела по мужскому типу). Знание этих особенностей существенно поможет в подго­товке квалифицированного пловца.

Плавание требует огромных энергетических затрат. При этом энергетическое обеспечение отличается целым рядом особенно­стей. Уже простое нахождение в воде усиливает энергообмен вследствие повышенной теплоотдачи в воде. Особенности энер­гообеспечения обусловлены спецификой дыхания в воде, поло­жением тела, длиной соревновательной дистанции или трени­ровочных отрезков, мощностью выполняемой работы.

Расход энергии увеличивается пропорционально мощности выполняемой работы, вплоть до достижения «критической» мощности, что соответствует 80 % максимального потребления кислорода (МПК). При мощности работы выше «критической» происходит непропорциональное увеличение энергопродукции.

Интенсивность работы тесно взаимосвязана со скоростью плавания.

Биоэнергетические возможности организма — наиболее важ­ный фактор, лимитирующий его физическую работоспособность. Пловцы в течение 4 мин могут поддерживать скорость, состав­ляющую 75 % от максимальной, а в течение часа — 50—60 %.

В связи с высокими энергетическими тратами организма и их спецификой требуется высочайший уровень функциони-


 




рования систем энергообеспечения организма. Известно, сколь велика роль в этих процессах систем дыхания, крови и кровооб­ращения.

Плавание требует огромных функциональных возможностей дыхания. Это связано с тем, что процессам биологического окис­ления энергетически емких веществ необходимо присутствие кислорода. Аппарат дыхания, вся система дыхания обеспечи­вают организм кислородом. Не случайно, квалифицированные пловцы-мужчины имеют показатель ЖЕЛ 7—8 л; женщины — 5—6 л. Показатель ЖЕЛ напрямую обусловлен квалификаци­ей спортсмена.

Максимальная легочная вентиляция у квалифицированных пловцов достигает 200 л и более. Она определяется частотой и глубиной дыхания. По показателям объемной максимальной скорости вдоха пловцы превосходят представителей всех спортивных специализаций. Частота дыхания при плавании строго детерминирована частотой плавательных движений и увеличивается в соответствии с возрастанием частоты греб­ков. В зоне максимальных скоростей плавания частота дыха­ния составляет 55—60 цикл./мин.

Организм пловца обладает высокой анаэробной производи­тельностью. Максимальный кислородный долг (МКД) являет­ся показателем максимальной анаэробной производительности. Это — то наибольшее количество кислорода, которое организм должен потребить после окончания интенсивной работы в вос­становительном периоде. С ростом тренированности показатель минутного объема увеличивается, достигая у квалифицирован­ных пловцов 20 л и более.

В плавании, как и в других циклических видах спорта, важ­нейший фактором, обусловливающим уровень специальной работоспособности, является степень развития процессов энер­гообеспечения, в частности аэробной производительности орга­низма. Аэробные возможности в значительной мере определя­ют специальную выносливость пловцов при прохождении различных дистанций. Значение аэробных возможностей за­ключается в способности выполнять большой объем работы, ко­торая является базой для спортивных достижений в плавании. На ее основе строится работа по развитию скоростно-силовых возможностей, анаэробной производительности.

Аэробные процессы в организме оцениваются следующими показателями: максимальным потреблением кислорода (МПК), порогом анаэробного обмена (ПАНО). МПК характеризует сте­пень развития аэробных процессов в организме, его максималь-


ную аэробную производительность и является диагностическим признаком общей работоспособности и степени тренированно­сти. Величина МПК выражает максимальные возможности физиологических систем, участвующих в кислородном обеспе­чении мышечной деятельности. МПК у квалифицированных пловцов составляет свыше 5000 мл /мин. ПАНО характеризует тренированность спортсмена. Так, если у нетренированных лиц ПАНО обнаруживается при мощности работы, соответствующей 40 % от МПК и ниже, то у высококвалифицированных пловцов более высокие показатели ПАНО — 70 % от МПК и выше.

Наряду с дыханием в обеспечении энергетики плавания са­мое деятельное участие принимают системы кровообращения и крови.

Сердечно-сосудистая система функционирует в условиях, присущих только данному виду двигательной деятельности. Горизонтальное положение тела, гипогравитация, отсутствие статического напряжения мышц, ритмические их сокращения, сочетаемые с быстрыми глубокими вдохами и энергичными выдохами, способствуют уменьшению кровенаполнения пери­ферических сосудистых областей, увеличению притока крови к органам грудной клетки и головного мозга. Вследствие этого кровообращение у пловцов имеет некоторые специфические особенности.

У квалифицированных пловцов наблюдается существенное увеличение объема сердца. У них имеет место выраженная гипертрофия миокарда левого и часто правого желудочков сер­дца. Это обусловлено повышенным давлением в сосудах боль­шого и особенно малого кругов кровообращения. Правда, сле­дует отметить, что в последнее время вместе с внедрением в спортивную практику эхокардиографического метода гипер­трофия выявляется не всегда. Есть мнение, что гипертрофия — не лучший тип адаптации.

В покое у спортсменов отмечается урежение частоты сердеч­ных сокращений (брадикардия). Под влиянием нагрузки серд­це может увеличивать свою производительность в 6—7 раз.

Эффективность кровообращения определяется не только про­изводительностью работы сердца, но и состоянием сосудистой сети, а также особенностями протекающей по сосудам жидко­сти — крови, ее биофизическими свойствами и морфологичес­ким составом.

Конечным звеном, на уровне которого реализуется функция кровообращения, является система микроциркуляции. Учение о микроциркуляции берет свое начало с 50-х гг. XX столетия.


 




В настоящее время здесь накоплено огромное научное знание. Однако трудность его изучения заключается в сложности мето­дик исследования и недоступности его объекта. Почти един­ственным «окном» в систему микроциркуляци у спортсменов является бульбарная конъюнктива глаза. Ее изучение основа­но на том положении, что общее состояние сердечно-сосудис­той системы организма отражается на состоянии микрососудов бульварной конъюнктивы глазного яблока. Известная сегодня методика биомикроскопии бульварной конъюнктивы позволя­ет до известных пределов изучить состояние микроциркуляции у пловцов. С помощью данного метода исследования установ­лено увеличение количества функционирующих микрососудов в покое, особенно капилляров, при этом в покое повышена ве­личина просвета капилляров и посткапилляров. Без сомнения, это признак интенсификации обменных процессов. В условиях возросшего просвета перфузия эритроцитов осуществляется с «положительным зазором», так что затраты энергии на кро­воток существенно уменьшаются. Более того, у пловцов увели­чено отношение сечения прекапиллярных сосудов к посткапил­лярным, что обусловливает повышенное посткапиллярное сопротивление. Замедление кровотока в капиллярах и постка­пиллярное сопротивление способствуют более полной отдаче кислорода в ткани и соответственно обеспечивают восстанови­тельные процессы организма пловца.

Данные о системном давлении крови непосредственно во вре­мя плавания в литературе отсутствуют; очевидно, это связано с целым рядом методических трудностей.

Важную роль в обеспечении кровью работающих мышц играет механизм рабочей гиперемии. Свидетельством тому слу­жит значительное преобладание у пловцов кровотока в верх­них конечностях после всех вариантов нагрузок, даже на ве-лоэргометре.

Существенная составляющая физиологической структуры плавания — текучесть крови, интегральным параметром кото­рой является величина ее динамической вязкости. У квалифи­цированных пловцов в покое, как показывают исследования, она оказывается ниже (по сравнению с нетренированными ли­цами) на 20—30 %. Это способствует экономизации функций организма, ибо становятся меньше диссипации (потери) энер­гии, генерируемой сердцем, затрачиваемой на перемещение крови по сосудам.

Уменьшение вязкости крови связано с увеличением в крови молодых форм эритроцитов — эритропоэзом; за счет этого в це-


лом возрастает деформируемость эритроцитов, повышается текучесть крови. Снижение вязкости крови оказывается сопря­женным с уменьшением вязкости плазмы.

В условиях повышенных требований к функциональному состоянию организма пловца (функциональной подготовленно­сти) физиологическая структура техники плавания обладает большими резервными возможностями.

Заключение. Таким образом, техника плавания как наибо­лее рациональная система движений в воде существенным образом определяется особенностями среды, в которой проис­ходят движения пловца, особенностями его организма и глав­ное — их взаимодействием и взаимосвязью.

Понятие «техника» охватывает форму, характер движений, их внутреннюю структуру. В нее входит способность пловца наилучшим образом координировать и использовать для про­движения все внутренние и внешние силы, действующие на тело (табл. 4). Такая рациональная система неразрывно связана с индивидуальными особенностями организма, с уровнем раз­вития его двигательных и функциональных возможностей.

Главные особенности воды — ее плотность и текучесть. Это принципиально определяет закономерности передвижения в ней.

Поскольку особенности среды, в которой происходят движе­ния пловца, константны, а силы тяжести, воздействующие на тело пловца, практически уравновешиваются выталкивающи­ми силами, успешность перемещений определяется главным образом силовыми возможностями пловца и его гидродинами­ческими качествами. Не случайно с возрастом между ними уси­ливается взаимосвязь.

Гидродинамические качества — обтекаемость и плавучесть — зависят от особенностей телосложения: тотальных размеров тела, его обхватных размеров, диаметров и, главное, пропор­ций тела.

Овладение рациональной техникой плавания невозможно без соответствующего развития основных двигательных ка­честв: силы, быстроты, гибкости, ловкости и выносливости. Уровень развития этих качеств определяет рациональную фор­му движений, оптимальное распределение усилий, координа­цию движений, устойчивость и приспособляемость к меняю­щимся условиям. Вместе с тем сами по себе они не проявятся должным образом, если не будут базироваться на необходимой технической основе.

Техника плавания развивается в соответствии с наиболее об­щими закономерностями спорта, механики, физиологии, а это


 




значит, что не только существуют общие требования к рацио­нальным вариантам техники, но и то, что ее можно проанали­зировать, описать, определить круг практических задач.


Глава III ТЕХНИКА СПОРТИВНОГО ПЛАВАНИЯ



С учетом специфики системы условий, в которых организу­ются движения пловца, плавание можно уверенно отнести к числу технически сложных видов двигательной активности (видов спорта).

Достижение наивысшего спортивного результата в плавании обеспечивается сложным сочетанием технической, физическг i, тактической и психологической подготовленности спортсмена.

Плавание современными спортивными способами характе­ризуется обтекаемым положением тела, эффективным и эконо­мичным выполнением рабочих движений и наилучшей их координацией. Используя эти условия, спортсмен может пре­одолеть дистанции с высокой скоростью и со значительно мень­шими затратами энергии.

Усилия, прилагаемые пловцом в воде, существенно отлича­ются от усилий человека на суше. При плавании спортсмен во время гребка взаимодействует с небольшой массой воды, одна­ко время приложения силы у пловца более продолжительное и составляет в среднем 0,3—0,5 с. С ростом квалификации плов­цов от III спортивного разряда до мастера спорта происходит снижение отношения «время гребка/время всего цикла». Ис­следование этого показателя при свободном плавании и плава­нии в максимальном темпе дает одинаковую картину, однако значительное сокращение времени создания силы тяги влечет за собой уменьшение импульса силы и, соответственно, скорос­ти плавания.

Скорость является интегральной характеристикой техники плавания и определяется соотношением темпа движений и «шага» пловца.

Под темпом понимается количество гребков, выполняемых пловцом в единицу времени (за 1 мин). Так, например, если пловец преодолел дистанцию 100 м кролем «с толчка» за 58 с, сделав при этом 100 гребков, темп движений определяется сле­дующим образом:


                         
 
   
 
   
   
     
 
 
 
   
     
 
 



где п — количество гребков на дистанции.

Поскольку цикл при плавании кролем состоит из двух греб­ков, окончательная величина темпа будет 51,7.

Использование комплекса видеорегистрационной аппарату­ры с двумя подключенными видеокамерами (Д.Ф. Мосунов, В.М. Федчин, 1977) позволяет выявить, что даже в заплывах разными способами, в которых устанавливается рекорд мира, темп изменяется от цикла к циклу.




Поделиться с друзьями:


Дата добавления: 2014-10-22; Просмотров: 593; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.245 сек.