Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Деление спектра на цветовые участки 1 страница




 

Длины волн, определяющие границы участков, нм Цвета однородных излучений, преобладающие на данном участке
380^50 Фиолетовые
450-480 Синие
480-510 Голубые
510-560 Зеленые
560-590 Желтые
590-620 Оранжевые
620-760 Красные

Глава 1


Теоретические основы товароведения


 


Цвета делятся на ахроматические и хроматические. Ахромати­ческие цвета (белый, серый, черный) характеризуются одинаковой интенсивностью всех длин волн. Хроматические цвета, которые свойственны окрашенным телам, отличаются селективным (из­бирательным) отражением или пропусканием волн определенной длины, при этом излучения волн другой длины поглощаются. Иными словами, тела, отражающие лучи всех длин световых волн одинаково, окрашены в ахроматический цвет: от белого до чер­ного, а при избирательном отражении волн некоторых длин тела приобретают определенный хроматический цвет.

Цвет характеризуется цветовым тоном, яркостью, светлотой и насыщенностью. Цветовой тон зависит от спектрального сос­тава светового потока, попадающего на сетчатку глаза, по кото­рому мы и определяем цвет предмета. Различают три основные спектральные зоны цветовых тонов: красную - 760^00 нм; зе­леную - 570-490 нм и синюю - 490-400 нм. Эти цветовые тона называют основными, и из них могут быть получены все другие цвета и оттенки цветового спектра.

Согласно законам колориметрии (науке о цвете) любой цвет может быть получен смешением трех независимых основных цве­тов в соответствующих количествах, называемых координатами цвета. Данные координаты однозначно определяют цвет объекта при освещении его определенным источником света. Независи­мость основных цветов понимается в том смысле, что ни один из трех цветов не может быть получен из двух других, взятых в любых определенных количествах.

Яркость и светлота зависят от количества световой энергии, которую объект излучает или отражает. Яркостью количественно характеризуют источники излучения, светлотой - объекты, отра­жающие свет.

Насыщенность цвета определяет избирательную способ­ность тела пропускать или отражать свет. Чем выше степень избирательности, тем выше насыщенность цвета и тем сильнее выражен цветовой тон. Так, например, наибольшей степенью отражения характеризуется идеальный белый цвет; с умень­шением степени отражения происходит переход цвета в серый,


а затем и в черный, обладающий наименьшей отражательной способностью.

Материалы, пропускающие свет, характеризуются прозрачно­стью, т. е. пропускающей способностью и показателем прелом­ления, определяющим способность объекта преломлять световые лучи.

Очень важное значение имеет зрительное восприятие цвета че­ловеком, в соответствии с которым все цвета можно подразделить на теплые и холодные.

К теплым цветам относят более яркие, броские, бодрящие, воз­буждающие: красные, оранжевые, желтые, желтб-зеленые цвета. К холодным - более спокойные, менее выделяющиеся: зеленые, синие, фиолетовые, голубые и другие цвета.

Восприятие цвета зависит также от фона и последовательности рассмотрения цветов. Так, на светлом фоне черные цвета кажутся темнее и, наоборот, белые цвета на темном фоне кажутся более светлыми. Такой же эффект появляется, если светлые цвета рас­сматриваются после темных. Существенно влияет на восприятие цвета характер поверхности объекта. Цвет объекта с гладкой, глян­цевой поверхностью воспринимается более светлым, в то время как объекты с матовой поверхностью имеют более темный цвет. Наличие неровностей поверхности, а также ворса вызывают ощу­щение неравномерной окраски.

Оценка оптических свойств материалов и товаров успешно проводится современными инструментальными методами иссле­дований с использованием спектрофотометров, спектроколоримет-ров, блескомеров и другого оборудования. Однако по-прежнему наиболее распространенным является визуальный метод, основан­ный на способности глаза выявлять даже самые незначительные различия в цвете или оттенках. Особенно велика различительная способность глаза при сравнительной оценке рядом расположен­ных исследуемых тел. Наименьшее различие в цвете двух образцов, еще различимое глазом, называется цветовым порогом или порогом цветоразличения.

Во многих случаях важно определить не столько цвет, сколько его отличие от заданного цвета, так называемую разнооттеночность,


Глава 7


Теоретические основы товароведения


 


которая может устанавливаться как визуально, так и с использо­ванием инструментальных методов исследования. В последнем случае разнооттеночность может оцениваться количественно. При этом необходимо всегда помнить, что окончательным критери­ем точной подгонки цвета образца к эталону служит визуальная оценка, и правильность инструментальных методов проверяется совпадением инструментально измеренных параметров с визуаль­но наблюдаемыми.

Немаловажное значение в товароведении имеют акустические показатели, характеризующие свойства тел излучать, поглощать и проводить звук.

Особенно важны акустические свойства при оценке качества музыкальных инструментов, аудиоаппаратуры, звукоизолирующих и звукопроводящих материалов, а также при идентификации и де­фектоскопии керамических и стеклянных товаров.

Звук воспринимается ухом человека. При этом на слуховую мембрану воздействует акустическое поле в виде колебаний, соз­даваемых звуком в упругой среде. Основными параметрами, ха­рактеризующими акустическое поле, являются частота упругих колебаний, амплитуда, спектр и скорость звука, а также сила, тон звука и звукопроводимость.

Акустические колебания подразделяют на три диапазона: инфразвуковой - до 20 Гц, звуковой - от 20 до 2 • 104 Гц и ультра­звуковой - более 2 • 104 Гц.

Человеческое ухо воспринимает звуковые колебания, лежащие в диапазоне от 20 до 20 000 Гц. Спектр звука, представляющий собой совокупность простых синусоидальных колебаний, может быть сплошным или линейчатым. Сплошной спектр характери­зуется наличием непериодических колебаний, энергия которых более или менее равномерно распределяется в широком диапазоне частот и поэтому воспринимается как шумы. Линейчатые спектры отличаются периодичностью колебаний волн с определенными частотами, кратными частоте основного колебания. Линейчатые спектры свойственны музыкальным звукам.

Сила звука характеризуется мощностью звуковых колебаний, проходящих через единицу поверхности? расположенной перлен-


дикулярно направлению распределения звука, и выражается в еди­ницах Вт/м2. На практике довольно часто сила звука выражается в децибелах (дБ), определяя показатель силы звука объекта по сравнению с силой звука на пороге слышимости, принимаемого за величину 10~12 Вт/м2. Физиологически воспринимаемая сила звука характеризуется как громкость.

Важное значение для ряда товарных групп имеют такие показа­тели акустических свойств, как скорость звука и звукопроводность товаров и материалов. Эти показатели очень сильно зависят от природы и структуры материалов, а также условий окружающей среды (температуры, влажности и др.), что позволяет использовать данные акустические показатели для оценки качества и дефектнос­ти хрустальных изделий, характеристики звукопроводящих и зву­коизолирующих свойств материалов, определения консистенции промышленных и продовольственных товаров.

Одними из важнейших свойств материалов являются электри­ческие свойства, характеризующие отношение материалов и из­делий к подведенному к ним электрическому току.

Показатели электрических свойств имеют большое значение при оценке качества электротехнических материалов и изделий из них.

Основными показателями электрических свойств являются электропроводность, удельное электрическое сопротивление, тем­пературный коэффициент сопротивления.

Важнейшим параметром материалов является их электропро­водность. Электрическая проводимость (электропроводность) - это способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля. Электропроводность обусловлена наличием в материалах подвиж­ных электрических зарядов - носителей тока.

В зависимости от вида носителей тока различают электронную проводимость (у металлов и полупроводников), ионную (у элект­ролитов) и смешанную - электронно-ионную (у плазмы),

Мерой электрической проводимости является показатель удель­ной электрической проводимости, рассчитываемый по формуле


Глава 7


Теоретические основы товароведения


 


где ст - электрическая проводимость; К - сопротивление проводника; 5 - сечение проводника; / - длина проводника.

Электрическая проводимость измеряется в симменс/метр (СМ/м)*.

Величина, обратная удельной электропроводности, называется

лтр>ттт,Н1^тАЛ тттрц-тгширгт^илл гпппгУГИВТТР.НИем ^П^'

Электрическое сопротивление представляет сооои физическую величину, характеризующую противодействие проводника или электрической цепи электрическому току.

В зависимости от величины удельной электрической проводи­мости все тела можно разделить на три группы: 1 - проводники, 2 - полупроводники, 3 - диэлектрики.

К проводникам относятся материалы, имеющие электрическую проводимость а > 106 СМ/м и обладающие электрическим сопро­тивлением р < 10'6 Ом-м. Металлы и сплавы металлов являются типичными проводниками. Лучшими проводниками считаются такие металлы, как серебро, медь, алюминий, у которых значения удельного электрического сопротивления составляют соответ­ственно 0,016; 0,017; 0,028 Ом-СМ.

При нагревании электрическое сопротивление проводников возрастает, а при переходе из твердого состояния в жидкое в боль­шинстве случаев наблюдается скачкообразный рост этого пока­зателя. Например, при переходе из твердого в жидкое состояние удельное электрическое сопротивление у ртути, меди и алюминия увеличивается соответственно в 3,2; 2,4; 1,64 раза.

Заметное влияние на величину электрической проводимости металлов оказывают приложенные к ним механические нагрузки.

* Симменс (СМ) - проводимость участка цепи сопротивлением 1 Ом.


При деформациях растяжения удельное электрическое сопро­тивление возрастает, при деформациях сжатия - уменьшается.

Полупроводники - это материалы, электрическая проводимость которых (о) находится в пределах:

По своим электрическим свойствам полупроводники занимают промежуточное положение между проводниками и диэлектриками. К полупроводникам относится ряд химических элементов (81, 8е, С, Аз), а также их сплавы, сульфиды, оксиды и другие соединения (М§2,Си20,А15ЪидР.).

В полупроводниках при абсолютном нуле и в отсутствии подво­да энергии извне в зоне проводимости электронов нет, и материал в этих условиях не проводит электрического тока, т. е. является изолятором. При повышении температуры до некоторой вели­чины валентные электроны приобретают дополнительную энер­гию и переходят в возбужденное состояние, т. е. переходят в зону проводимости. При этом в том месте, которое занимал электрон в валентной зоне, образуется так называемая дырка - элементар­ная частица с зарядом, равным заряду электрона, но обладающая положительным знаком.

Диэлектрики, к которым относится большинство полимерных материалов, а также силикатные стекла, фарфор, керамика и дру­гие материалы, характеризуются низким значением электрической проводимости и высоким удельным электрическим сопротивле­нием:

Низкая электрическая проводимость диэлектриков обуслов­лена отсутствием в их структуре свободных электронов, т. к. все электроны связаны с положительно заряженными ядрами и при­надлежат определенным атомам или молекулам. Незначительная ионная проводимость диэлектриков в слабых полях обусловлена наличием примесей и структурных дефектов.

Одной из важнейших физических характеристик диэлектриков является показатель диэлектрической проницаемости (в).


Глава 1


Теоретические основы товароведения


 


Величина диэлектрической проницаемости показывает, во сколько раз уменьшается сила электростатического (кулонов-ского) взаимодействия электрических зарядов при переносе их из вакуума в однородный изотропный диэлектрик, если расстояние между зарядами сохраняется неизменным.

Для вакуума величина диэлектрической проницаемости равна единице, а для других сред 8 больше единицы. Например, для сили­катных стекол она составляет 5-10 единиц, для резины - 1,5-2,5.

Величина диэлектрической проницаемости зависит от фазового и физического состояния вещества. Например, для воды в зависи­мости от ее физического состояния (пар, жидкость, лед (кристалл)) показатель 8 составляет соответственно 1,007; 81,0; 2,9 единиц. У неполярных диэлектриков величина диэлектрической проница­емости мало зависит от температуры.

У диэлектриков ионного строения, в частности у стекол и кера­мических материалов, при росте температуры е обычно возраста­ет, однако у некоторых ионных кристаллов, например у ТЮ2, при повышении температуры е уменьшается.

Одним из важнейших показателей свойств диэлектриков яв­ляется показатель величины диэлектрических потерь, связанный с выделением теплоты в диэлектриках под воздействием перемен­ного электрического поля. Диэлектрические потери появляются в результате рассеивания в диэлектрике части электрической мощ­ности, превращающейся в тепло.

Диэлектрические потери обусловлены наличием токов сквоз­ной проводимости (токов утечки), запаздыванием поляризации, а также ионизацией воздушных включений (потерями энергии на ионизацию). С возрастанием напряженности и частоты электриче­ского поля, увеличением увлажнения и загрязненности диэлект­рика, а также с ростом температуры величина диэлектрических потерь увеличивается.

Диэлектрические потери характеризуются величиной тангенса угла диэлектрических потерь 1§а, численно равной доле запасенной в диэлектрике энергии, необратимо рассеиваемой в виде тепловых и других потерь, за один период колебаний электрического поля.


При высоких напряжениях электрического тока (в области по­лей 107-109 в/м) может наблюдаться резкое увеличение электро­проводности диэлектрика.

При достижении определенной разности потенциалов между электродами увеличение электропроводности приводит к резко­му увеличению силы тока, проходящего через диэлектрик, т. е. к пробою диэлектрика. При этом материал теряет диэлектриче­ские свойства и становится проводником, что сопровождается его разрушением. Наименьшая напряженность электрического поля, при которой происходит пробой ), является мерой электри­ческой прочности диэлектрика. Установлено, что полимеры, не содержащие полярных примесей, обладают высокой электрической прочностью. Их пробивное напряжение при комнатной темпера­туре составляет 108-109 в/м, причем более высокое ее значение наблюдается у полимеров, содержащих полярные группы.

В присутствии влаги или включений воздуха, ионизирующихся в сильном электрическом поле, величина пробивного напряжения значительно снижается.

Механические свойства являются параметрами, характеризу­ющими поведение материалов под воздействием механических нагрузок. Эти свойства определяют по результатам механических испытаний, при которых материалы подвергают воздействию внешних сил (нагрузок).

По характеру действия внешние силы (нагрузки) могут быть статическими и динамическими. Статической называют нагрузку, медленно возрастающую от нуля до некоторого максимального зна­чения и далее остающуюся постоянной или меняющуюся незначи­тельно. Статическая нагрузка - это нагрузка, величина, направле­ние и место приложения которой изменяется столь незначительно, что при расчетах ее принимают независящей от времени.

Динамической нагрузкой называется нагрузка, характеризу­ющаяся быстрым изменением ее значения, направления или точки приложения.

Под действием нагрузок материалы могут деформироваться, т. е. изменять свои размеры и форму.


__________________________ Глава 7______________________________

Деформация (от лат. с1е/огтаИо) - это изменение формы или размеров тела или его части под воздействием внешних сил, вы­зывающих изменение взаимного расположения точек тела.

Деформации могут быть упругими и пластическими (остаточ­ными).

Упругие деформации - это деформации, исчезающие после снятия приложенных нагрузок.

Остаточные или пластические деформации — это деформации, не исчезающие после снятия приложенных нагрузок.

Кроме того, у полимерных материалов может проявляться особый вид деформации - высокоэластическая. Высокоэласти­ческая деформация - вид высокоупругой деформации, присущей аморфным полимерам в определенных интервалах температур, где проявляется гибкость цепных макромолекул. Высокоэластическая деформация характеризуется малым модулем упругости и боль­шими механическими обратимыми деформациями, во много раз превышающими начальные размеры образца. Основное отличие высокоэластической деформации от обычной упругой деформации заключается в том, что упругая деформация материалов в стекло­образном состоянии связана с изменением средних расстояний между частицами, а высокоэластическая деформация вызвана пе­регруппировкой звеньев цепных молекул без изменения среднего расстояния между ними. Перемещение полимерных молекул от­носительно друг друга затруднено из-за больших размеров самих молекул, а для "сшитых" систем, например для резин, у которых чаще всего проявляется высокоэластичность, - из-за наличия до­статочно прочных поперечных связей между макромолекулами.

Существуют различные виды деформаций, основные из кото­рых: растяжение, сжатие, кручение, сдвиг (срез), изгиб.

Растяжение ~ это деформация, характеризуемая увеличением размеров (длины) тела под действием сил, приложенных вдоль оси тела. Деформацию растяжения испытывают тросы с подвешенны­ми грузами, приводные ремни, передаточные механизмы и др.

Сжатие - это деформация, характеризуемая уменьшением высоты (или объема) тела под воздействием сдавливающих сил,


_____________ Теоретические основы товароведения ___^__________

направленных вдоль оси тела. Этот вид деформации испытывают фундаменты сооружений, сваи, станины станков и пр.

Кручение - это деформация тела с одним закрепленным концом под действием пары сил, плоскость которых перпендикулярна к оси тела. Деформацию кручения испытывают валы станков, двигате­лей, оси машин и пр.

Сдвиг (срез) - вид деформации, характеризующейся изменени­ем углов элементарных параллелепипедов без изменения размеров их граней. При сдвиге соседние участки материала сдвигаются относительно друг друга, оставаясь параллельными.

Сдвиг предшествует срезу, происходящему в том случае, когда направления сил, действующих на тело, лежат не на одной прямой.

Деформацию сдвига и среза испытывают заклепки, стяжные болты, клеевые соединения и др.

Изгиб - это деформация тела под воздействием внешних сил, со­провождающаяся изменением кривизны деформируемого тела.

Деформациям изгиба подвергаются поперечные балки сооруже­ний, пролеты мостов, стрелы подъемных кранов, рельсы и т. п.

В реальных условиях эксплуатации в виде изделий или его составных частей материалы могут подвергаться одновременно нескольким видам деформации.

Испытания для оценки величины механических свойств прово­дят, как правило, в испытательных лабораториях на специальных машинах и приборах.

Наиболее распространенными ввиду их простоты и скорости проведения являются статические механические испытания, чаще всего это испытания при растяжении. Большинство технических условий, нормирующих уровень качества материалов, базируется на статических механических испытаниях, которые хотя и услов­но, но характеризуют поведение материалов в условиях реальных нагружений при эксплуатации и обработке.

Испытания материалов на растяжение осуществляют на специ­ально изготовленных образцах, форма и размеры которых для каждо­го вида материала устанавливаются нормативными документами.

В качестве образцов могут использоваться образцы типа "дву­сторонняя лопатка" круглого и плоского сечения, а также образцы


Глава 1


Теоретические основы товароведения


 


прямоугольной формы (для пленочных материалов, бумаги, тканей

и др.).

Рекомендуется использовать для испытаний образцы, у кото­рых длина равна десяти- или двадцати кратной ширине (или де-сяти-двадцатикратному диаметру для образцов цилиндрической формы).

Части образца, помещаемые в захваты разрывных машин, а так­же форма и радиусы закруглений переходных частей образца, не участвующих в испытаниях, также должны отвечать установлен­ным требованиям.

Испытания труб, тонких прутков, проволоки, нитей и других могут производиться непосредственно на материалах без изго­товления образцов специальной формы. Для исследовательских и научных целей допускается использование нестандартных по размерам и форме образцов, например микрообразцов.

Для материалов, характеризующихся заметным влагопогло-щением (например, бумага, ткани, хлопчатобумажные нити, ряд полимерных материалов и др.), перед испытанием должно про­водиться кондиционирование при стандартной влажности и тем­пературе (относительная влажность воздуха - 65%, температура 20-22 °С) в течение сроков, указанных в нормативных документах (длительность кондиционирования зависит от природы материала, его плотности и размера образцов (толщины и др.).

При осуществлении испытаний на растяжение поведение ма­териала под действием прилагаемых к нему нагрузок или напря­жений наглядно характеризуется диаграммой растяжения (дефор­мации), которая строится в координатах нагрузка или напряжение (ось ординат) - абсолютное или относительное удлинение (ось абсцисс).

Такие диаграммы значительно более информативны, чем только конечные координаты кривой растяжения (максимальная нагрузка (напряжение) и максимальное удлинение), обычно измеряемые при испытаниях на разрыв. Диаграммы могут быть построены по точкам на основании измерений, проведенных в процессе ис­пытания образца материала, или же вычерчены автоматическим самопишущим прибором на диаграммной ленте.


На рис. 1.1 приведена одна из типичных диаграмм растяжения образца пластичного материала.

Из представленной кривой деформации видно, что до точ­ки А существует линейная зависимость между нагрузками (на­пряжениями), прикладываемыми к образцу и величиной дефор­мации. Этот участок (ОА) диаграммы растяжения характеризуется наличием упругих обратимых деформаций.

Точка А является той предельной нагрузкой (напряжением), после которой происходит отклонение от линейной зависимости величины нагрузки (напряжения) в принятой системе координат нагрузка (напряжение) - деформация. С увеличением растягива­ющей силы или напряжения выше точки А деформация начина­ет возрастать быстрее нагрузки (напряжения), и при нагрузках (напряжениях) В, даже незначительно превышающих нагрузку (напряжение) А, в материале появляются необратимые (пласти­ческие) деформации. При дальнейшем деформировании материала наблюдаются резкие изменения в его поведении: при некотором значении растягивающей силы (напряжения) материал "течет" (например, в точке С), т. е. для увеличения его деформации прак­тически не нужно увеличивать растягивающую силу или напря-


Удлинение е, % Рис. 1.1. Диаграмма растяжения материала

о, МПа


Глава 1


Теоретические основы товароведения


 


жение в материале. На диаграмме растяжения образуется почти горизонтальная (иногда и горизонтальная) площадка.

Во время течения материала на поверхности образца образуют­ся выраженные в более или менее резкой форме следы от взаимного перемещения частиц материала при наступлении значительных де­формаций образца (у металлов - так называемые линии Чернова). После образования площадки текучести материал может вновь начать сопротивляться дальнейшему деформированию и для его растяжения приходится увеличивать нагрузку. Точка О диаграм­мы деформации соответствует наибольшей величине приложен­ной к образцу нагрузки (напряжения). В этот момент поведение образца еще раз резко меняется. Если до этого деформировался весь образец и каждая единица его длины увеличивалась примерно одинаково, то с момента достижения нагрузкой (напряжением) величины О деформация сосредотачивается в определенном мес­те (иногда в нескольких местах) - сравнительно малый участок образца вблизи этого места подвергается в дальнейшем наиболь­шему нагружению. Это приводит к местному сужению попереч­ного сечения с образованием перетяжки, так называемой "шейки". Вследствие уменьшения площади в деформировавшейся части для дальнейшего удлинения образца нужна все меньшая и меньшая сила (напряжение). Наконец, при нагрузке (напряжении), равной нагрузке (напряжению) в точке К, происходит разрыв образца.

В качестве основных параметров, характеризующих прочност­ные и деформационные свойства материалов, используются соот­ветственно величины показателей напряжения и относительного удлинения.


где а - напряжение (Па, н/см2, н/мм2, кгс/см2); Р - нагрузка (Н, кгс); 5- площадь поперечного сечения образца (мм2, см2).

Напряжение о - это величина нагрузки (силы), действующей на образец материала, отнесенная к площади поперечного сечения испытуемого образца:


Относительным удлинением (е) называется отношение прира­щения длины образца в процессе деформации к его первоначаль­ной длине, т. е. длины до испытания:

Если величина относительной деформации выражается в про­центах, то показатель относительной деформации е рассчитывается по боомуле

где е - относительная деформация (относительные единицы);

е% - относительная деформация, %;

/0 - первоначальная длина образца (мм, см);

/1 - длина образца в любой конкретной точке диаграммы рас­тяжения (мм, см);

Д/ - прирост длины образца в этой точке диаграммы растяже­ния (мм, см).

На диаграмме растяжения, представляющей графическое изоб­ражение зависимости между относительной деформацией и на­пряжениями, возникающими в материале под воздействием ме­ханической силы, имеется ряд характерных точек, определяющих важнейшие показатели свойств материала.


где Е - модуль упругости (Па);

Как видно из диаграммы растяжения, на ее начальном участке до напряжений, соответствующих точке А, выполняется линейная зависимость между напряжением и деформацией, называемая за­коном Гука. Эта зависимость может быть определена величиной тангенса угла наклона кривой растяжения на ее начальном участке (до точки А), характеризующем упругие деформации материала. Коэффициент этой пропорциональности (Е) называется модулем упругости, или модулем Юнга:


 



 


Глава 1


Теоретические основы товароведения


 


ом - напряжение в любой точке кривой деформации на ее на­чальном (линейном) участке;

8м - относительная деформация, соответствующая напряже­нию а.

М

Модуль упругости - это показатель, определяющий сопротив­ление материала упругой деформации. Он является мерой устой­чивости материала к деформированию его под действием внешней силы, т. е. по существу является показателем, характеризующим жесткость материала.

ТочкаХ соответствует предельному напряжению, при котором сохраняется пропорциональность между величиной приложенного напряжения и деформацией образца.

Предельное напряжение, при котором сохраняется линейная зависимость между напряжением и деформацией, называется пре­делом упругости или пределом пропорциональности - о.




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 593; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.09 сек.