Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лінійні операції над векторами в координатній формі




Нехай заданий базис і вектори (, , ), або, що те ж саме, , .

Сума векторів. Запишемо суму векторів

або, згідно властивостям лінійних операцій над векторами,

. (5.3)

Таким чином, при додаванні векторів їх відповідні координати додаються.

Добуток вектора на число. Помножимо вектор на число :

або

. (5.4)

Тобто при множенні вектора на число координати вектора множаться на це число.

Приклад 5.1. В базисі дано вектори , . Знайти вектор .

Розв’язок. Згідно формулам (5.3), (5.4)

.

Відповідь: t

Рівність векторів. З означення вектора як направленого відрізка, який можна переміщати в просторі паралельно самому собі, випливає, що два вектори і рівні тоді і тільки тоді, коли рівні їх координати:

Колінеарність векторів. Вияснимо умови колінеарності векторів і ,заданих своїми координатами.

Так як , то за властивостями добутку вектора на число можна записати , де – деяке число, тобто

.

Звідси , , , тобто , , або

. (5.5)

Таким чином, координати колінеарних векторів пропорційні. Справедливе і обернене твердження: вектори, що мають пропорційні координати, колінеарні.

Зауваження. Співвідношення (5.5) умовно записуватимемо і у випадку, коли серед чисел , , є рівні нулю.

Нехай на площині заданий базис і вектори , . В цьому випадку мають місце формули, аналогічні формулам (5.3) – (5.5).

Приклад 5.2. Перевірити, чи колінеарні вектори і , задані в базисі :

а) , ; б) , .

Розв’язок. Згідно формули (5.5):

а) , а отже .

б) .

Так як друга координата в обох векторів рівна нулю, то їх можна розглядати як вектори, задані на площині в базисі , а отже і . t

Приклад 5.3. В базисі дано вектори , . Показати, що вектори утворюють базис, і знайти координати вектора в базисі .

Розв’язок. Якщо два вектори утворюють базис, то вони неколінеарні. Згідно формули (5.5):

,

а отже вектори неколінеарні і утворюють базис.

В новому базисі вектор можна представити у вигляді лінійної комбінації

,

де коефіцієнти , – невідомі і є координатами вектора в базисі .

Знайдемо ці координати. Для цього розпишемо розклад вектора в координатній формі:

,

що рівносильно системі двох лінійних рівнянь з двома невідомими

Розв’яжемо цю систему за формулами Крамера:

; .

Обчислимо визначники:

;

;

.

Отримаємо ; .

Відповідь: . t

Приклад 5.4. В базисі дано вектори , , . Показати, що вектори утворюють базис, і знайти координати вектора в базисі .

Розв’язок. Якщо три вектори утворюють базис, то жоден з них не є лінійною комбінацією двох інших. Тоді визначник, складений з координат цих векторів, відмінний від нуля, так як лінійні операції над векторами зводяться до відповідних лінійних операцій над їх координатами. Обчислимо цей визначник:

.

Отже, вектори утворюють базис.

В новому базисі вектор можна представити у вигляді лінійної комбінації

,

де коефіцієнти – невідомі і є координатами вектора в базисі .

Знайдемо ці координати. Для цього розпишемо розклад вектора в координатній формі:

,

що рівносильно системі трьох лінійних рівнянь з трьома невідомими

Розв’яжемо цю систему за формулами Крамера:

; ; .

Очевидно, що визначник як визначник транспонованої матриці:

.

Обчислимо

Отримаємо ; ;

Відповідь: . t

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1019; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.