Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уточнение модели проектируемого объекта 3 страница




В случае линейности систем, когда переменные обладают свойством однородности и аддитивности, вид уравнений упрощается, что позволяет решать их аналитическими или численными (приближенными) методами.

Линейность – свойство системы, которое позволяет делать выводы о поведении системы для всего класса входных воздействий, основываясь на том, как она реагирует лишь на некоторые из них. Общая реакция системы на входные воздействия является суммой отдельных реакций.

Основное свойство линейных систем – выполнение принципа суперпозиции решений: линейной комбинации произвольных входных сигналов ставится в соответствие та же линейная комбинация сигналов на выходе из системы: любая линейная комбинация решений также является решением задачи, т.е. если известны решения Y 1при Х 1 и Y 2 при Х 2, то решение для выходных параметров при Х = Х 1 + Х 2 есть Y = Y 1 + Y 2.

Пусть на одном интервале t 0 t заданы два фрагмента Хt 0 t ' и Хt 0 t '' различных входных процессов ХТ ' и ХТ '', а в момент времени t 0 - два различных состояния z' (t 0) и z'' (t 0). Введем в рассмотрение фрагменты Хt 0 t = Хt 0 t ' + Хt 0 t '' и кХt 0 t , а также состояния z (t 0) = z' (t 0) + z'' (t 0) и к z (t 0).

По отношению к операциям умножения и сложения операторы могут быть однородны и аддитивны.

Операторы α и β однородны, если

α (t0t, к z (t0), кХt0t) = к α (t0t, z (t0), Хt0t);

β (t0t, к z (t0), кХt0t) = к β (t0t, z (t0), Хt0t).

Операторы α и β аддитивны, если

α (t0t, z (t0), Хt0t) = α (t0t, z' (t0), Х't0t) + α (t0t, z'' (t0), Х''t0t);

β (t0t, z (t0), Хt0t) = β (t0t, z' (t0), Х't0t) + β (t0t, z'' (t0), Х''t0t).

Принцип суперпозиции предполагает

[ x (t) = x 1 (t) + x 2 (t)] → [ y (t) = y 1 (t) + y 2 (t)],

где x 1 (t) и x 2 (t) - некоторые входные воздействия, а y 1 (t) и y 2 (t) - выходные отклики на каждый из них в отдельности.

Конечное состояние системы определяется как сумма состояний, в которые перешла бы система под воздействием фрагментов входных воздействий.

Линейные системы дают возможность разложения величин z (t) и y (t) на составляющие, изучение которых можно проводить независимо друг от друга.

Пользуясь принципом суперпозиции, можно, найдя решение в каком-либо частном случае, построить решение для более общей ситуации. О качественных свойствах общего случая можно судить по свойствам частного – различие между решениями носит только количественный характер. Или: в случае линейных моделей отклик системы на изменение каких-либо условий пропорционален величине этого изменения.

Линейной моделью представляются простые объекты, она полезна в начале цепочки моделей, последовательно приближающихся к модели с требуемой адекватностью. Линейная модель часто позволяет сразу получить оценку порядка значений выходных переменных.

Нелинейная модель не подчиняется принципу суперпозиции, знание о поведении части системы еще не гарантирует знания поведения всей системы, а ее отклик на изменение каких-либо условий может качественно зависеть от величины этого изменения.

Иногда нелинейную задачу удается свести к последовательности линейных. Линеаризацией нелинейной задачи можно получить линейную модель для достаточно корректной оценки воздействия на систему малых возмущений.

То, что точно схватывает и передает характерные особенности одного класса нелинейных функций, ничего не говорит даже о простейших особенностях типичного представителя другого класса. Геометрический образ нелинейной функции — кривая на плоскости, искривленная поверхность или гиперповерхность в пространстве трех или большего числа измерений. На одинаковые приращения независимой переменной одна и та же нелинейная функция откликается по-разному в зависимости от того, какому значению независимой переменной придается приращение. Почти полным безразличием к изменению одних и повышенной чувствительностью к изменению других значений независимой переменной нелинейные функции разительно контрастируют с линейными. Именно здесь и проходит демаркационная линия между миром нелинейных и миром линейных явлений.

В какой бы области естествознания ни возникала нелинейность явлений, она глубоко «функциональна». В физике нелинейность — это учет различного рода взаимодействий, обратных влияний и тонких эффектов, ускользающих от более грубых сетей линейной теории. В химии нелинейность отражает обратные связи в сокровеннейших механизмах реакций. В биологии нелинейность исполнена высокого эволюционного смысла: только сильная нелинейность позволяет биологическим системам «…услышать шорох подползающей змеи и не ослепнуть при близкой вспышке молнии. Те биологические системы, которые не смогли охватить громадный диапазон жизненно значимых воздействий среды, попросту вымерли, не выдержав борьбы за существование. На их могилах можно было бы написать: «Они были слишком линейными для этого мира»

Вопрос о возможности и целесообразности перехода от нелинейности к линейности решается в каждой задаче конкретно на рациональном уровне.

Большинство реальных процессов нелинейны, а линейные их модели отвечают весьма частным случаям и, как правило, служат первым приближением к реальности.

Нелинейные уравнения можно разделить на два подкласса: алгебраические, в которых над переменными производятся только действия сложения, вычитания, умножения, деления и возведения в степень с рациональным показателем, и трансцендентные, в которые входят другие функции от переменных (показательные, тригонометрические и др.). В любом случае сложность модели существенно зависит от числа уравнений и вида входящих в них функций. Обычно наиболее просто решаются алгебраические уравнения 1-й степени (линейные), наиболее сложно – трансцендентные.

Пример – закон Гука о линейной зависимости перемещения от растягивающей силы F = - кx. Упругость означает существование однозначной монотонно возрастающей функции, связывающей напряжение s = F / S (S - площадь поперечного сечения) и деформацию ε = x / l (x – относительное перемещение концов, l – длина образца): s = f (ε), f (0) = 0. Функция f в общем случае нелинейная. Нелинейными упругими свойствами обладают, например, высокоэластичные резиновые шнуры – ели такой шнур растянуть в десять раз (ε = 0,9), а затем отпустить, он восстановит свою длину. Если длинные металические проволоки подвергать малым деформациям (ε = 0,001), нелинейность не обнаруживается. При растяжении металлического стержня по мере возрастания растягивающего напряжения s деформация ε сначала растет по линейному закону. Это означает, что при таких ε первый член разложения функции s = f (ε) (полагая ее аналитической) в степенной ряд s = εf /∂ ε +½! ε 22 f /∂ ε 2 +... значительно превосходит все остальные. Тогда s = Еε (Е – модуль упругости материала при его одноосном сжатии). Нелинейный закон – параболическая зависимость

s = Аε - Вε 2.

Применение иерархического подхода позволяет на определенном этапе моделирования принимать упрощающие предположения, например, о линейности моделей.

Линейные модели занимают определенную нишу в исследованиях – любая линейная теория ограничена в определенных пространственных и временных рамках при малых интенсивностях воздействий на систему. Например, в строительстве не учитывают кривизну Земли, в космической технике не прибегают к теории относительности при несоизмеримых скоростях.

Методы исследования линейных систем очень развиты и обоснованное применение линейной модели для нелинейной системы часто оказывается весьма эффективным.

Если нелинейность является принципиальной, то применение линейных систем не дадут даже качественной картины процесса.

Например, закон тяготения изначально нелинейный (квадратичная зависимость силы взаимодействия между массами), и потому основанные на нем модели также нелинейны. Нелинейность может быть также обусловлена геометрией явления, изменением состояния (изменение жесткости пружины при исследовании колебательного процесса).

Источником нелинейности могут быть различные причины. Обычно принято считать, что при малых (не всегда) отклонениях системы от положения равновесия соотношения между перемещениями или скоростями ее элементов и возникающими силами линейны.

Например, силы трения между поверхностями (поверхности разделены смазочным материалом жидкостью или газом) линейно зависят от скорости перемещения поверхностей, с увеличением скорости эта зависимость становится нелинейной – вязкое трение зависит от квадрата скорости:

Pтр = - кvα -1, α, к = const, при α =2 – турбулентное трение.

Обыкновенные дифференциальные модели

Одна из основных задач классической механики - задача прогнозирования движения различных тел и сред – решается на основе математической модели механического движения, которая представляет собой систему дифференциальных уравнений относительно координат и скоростей движущегося объекта. С помощью дифференциальных моделей решается большинство задач механики, гидродинамики, электродинамики и др.

Дифференциальное уравнение – уравнение, содержащее неизвестную функцию одного или нескольких переменных, независимые переменные и производные неизвестной функции по независимым переменным.

Обыкновенное дифференциальное уравнение – уравнение, в котором неизвестной является функция от одного независимого переменного, причем, в это уравнение входят не только сама неизвестная функция, но и ее производные различных порядков:

F [ x, y (x), y ’(x), …, y (n)(x)] = 0.

Общее решение: y = y (x, C 1,…, C n), при любом наборе С – частное решение.

Задача Коши (задача с начальными условиями) – задача о нахождении частного решения, которое удовлетворяет n частным условиям y (x 0) = y 0, y ’(x 0) = y0,…, y (n-1)(x 0) = y (n-1) 0.

Система обыкновенных дифференциальных уравнений для r неизвестных функций имеет вид

F i[ x, y 1, y 2, …, y r, y1, y2,…, yr,…, y n1, y n2, …, y nr] = 0, i = 1,…, r.

Линейное обыкновенное дифференциальное уравнение – линейно относительно искомой функции, независимого переменного и ее производной, т.е. уравнение вида

y (n) + a 1(x) y (n-1) + … + a n-1(x) y 1 + a n(x) y = f (x),

y (x) – искомая функция, a i(x), f (x) – заданные функции.

Задача прогнозирования движения (задача математического анализа) решается интегрированием дифференциальных уравнений движения при заданных начальных условиях (задача Коши) - пассивный расчет траектории движения объекта. Усложнение задачи – определить, какими должны быть начальные скорости объекта, чтобы из одного заданного положения он переместился в другое заданное – здесь уже присутствует элемент управления движением. Дальнейшее усложнение – траектория движения из одного положения в другое должна обладать определенным экстремальным свойством, например, минимальное время движения (задача о брахистохроне).

Законы механики – описание движения системы точек или твердого тела могут быть сведены к задаче нахождения решений ОДУ. Анализ устойчивости движения, химические реакции, теория колебаний, теория оптимального управления представляют собой динамические системы и могут быть формализованы ОДУ.

Процесс составления дифференциального уравнения по условию задачи (физической, технической) состоит в выражении на математическом языке связи между переменными величинами и их бесконечно малыми приращениями. Модели, описываемые обыкновенными дифференциальными уравнениями, в которых неизвестные функции зависят только от одной переменной - обыкновенные дифференциальные модели.

Построение обыкновенных дифференциальных моделей зависит от законов в конкретной предметной области.

Ответы на вопросы, поставленные при построении дифференциальной модели, получают после интегрирования дифференциальных уравнений. Большинство дифференциальных уравнений не может быть проинтегрировано в замкнутой форме (даже если известно, что такое решение имеется), т.е. не удается представить решение в виде аналитической зависимости, использующей конечное число операций над элементарными функциями (решение в виде бесконечного ряда далеко не всегда позволяет исследовать необходимые свойства).

Приемы и методы, которые позволили бы, не решая самих дифференциальных уравнений, получать необходимые сведения о тех или иных свойствах решений, предоставляет качественная теория дифференциальных уравнений.

В основе этой теории лежат общие теоремы о существовании и единственности решений, о непрерывной зависимости решений от начальных параметров. Численному интегрированию дифференциальных уравнений обязательно должно предшествовать обращение к теоремам существования и единственности.

5.3 Классификация математических моделей в зависимости от параметров модели

Непрерывные и дискретные модели

Процесс функционирования системы может протекать непрерывно или дискретно, и фазовое пространство, в котором функционирует система, может быть дискретным или непрерывным. Решение о дискретности или непрерывности модели принимается на этапе постановки задачи также на рациональном уровне.

Непрерывной во времени модель является в том случае, когда характеризующая ее переменная определена для любого значения времени; дискретной во времени - если переменная получена только в определенные моменты времени.

Дискретность модели может также возникнуть в том случае, если она состоит из непрерывных компонентов, но информация переходит от одной компоненты к другой по заданной схеме (такие переходы возможны только по окончании соответствующих операций).

Непрерывные модели применяются при изучении систем, связанных с непрерывными процессами, которые описываются с помощью систем дифференциальных уравнений, задающих скорость изменения переменных системы во времени. Непрерывные модели можно описать с помощью конечно-разностных уравнений, которые в пределе переходят в соответствующие дифференциальные уравнения.

Непрерывная система функционирует в непрерывном времени (интервал ее функционирования T = [ t 0, t k] представляет собой отрезок оси действительных чисел, заданный началом t 0 и концом tk), непрерывно изменяется состояние системы (непрерывны операторы α и β). Малые изменения входных воздействий приводят к такого же порядка малым изменениям состояния системы и выходных воздействий.

Модель непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка.

Модель S = gt 2/2, 0 < t < 100 непрерывна на промежутке времени ( 0; 100).

Непрерывные системы могут быть описаны с помощью дифференциальных или алгебраических уравнений.

Дискретная система функционирует в дискретном временном пространстве и определяется дискретными состояниями. Изменения ее состояния происходят лишь в дискретные моменты времени (дискретный интервал функционирования.

Дискретными могут быть системы, для которых дискретным является или только время, или только состояния. Это широкий и практически важный класс систем – в него входят все дискретные (цифровые, измерительные, управляющие и вычислительные, в том числе ЭВМ) устройства.

Дискретность временного пространства означает, что явления, сопровождающие изменения состояния системы, могут происходить лишь в моменты времени, образующие некоторое дискретное множество, в котором моменты времени можно пронумеровать. В частности, переходы системы из одного состояния в другое могут осуществляться в целочисленные моменты времени. Общий случай сводится к этому частному введением целочисленной нумерации моментов возможных изменений состояний.

Если рассматривать только t - 0, 1, 2,..., 10 (с), то модель S1 = gt2/2, или числовая последовательность S0 = 0, S = g/2, S2 = 2g, S3 = 9g/2,..., S10= 50g, может служить дискретной моделью движения свободно падающего тела.

Непрерывная система может рассматриваться как дискретная. Это достигается путем учета ее состояния лишь в отдельные моменты времени и округления их значений до целых единиц.

Системы с дискретными состояниями характеризуются тем, что в любой момент времени можно однозначно определить, в каком именно состоянии находится система. Для такой идентификации обязательно нужно знать тот признак, который отличает одно состояние системы от другого. Например, при исследовании систем массового обслуживания в качестве такого признака обычно используют число заявок в системе. Соответственно, изменение числа заявок в системе интерпретируется как переход системы в новое состояние.

Если же не удается подобрать такой признак, либо его текущее значение невозможно зафиксировать, то систему относят к классу систем с непрерывным множеством состояний.

Смена состояний может происходить либо в фиксированные моменты времени, множество которых дискретно (например, поступление новых заявок на обслуживание), либо непрерывно (изменение температуры тела при нагревании). В соответствии с этим различают системы с дискретным временем переходов (смены состояний) и системы с непрерывным временем переходов (точнее, «живущие» в непрерывном времени).

По условиям перехода из одного состояния в другое различают детерминированные системы и стохастические.

Дискретизация (преобразование непрерывной функции в дискретную) применяется в системах передачи, хранения и обработки информации, поступающей в виде непрерывных сигналов.

Например, передача фото или телевизионных изображений (функция двух или трех переменных) осуществляется путем разбивки на дискретные строки. Передача звука (функция одной переменой) с помощью импульсно-кодовой модуляции сопряжена с дискретизацией непрерывного сигнала и последующим кодированием (модуляция – изменение параметров некоторого физического процесса во времени в соответствии с текущим значением сигнала).

Дискретными могут быть системы с дискретным вмешательством случая – эти системы почти всегда ведут себя как непрерывные и только в дискретные моменты времени испытывают случайные воздействия.

В модели функционирования дискретной системы предполагается дискретность интервала функционирования T = [ t 0, t k].

Дискретизация по времени обычно выполняется так, чтобы интервал t = tn+1 - tn между ближайшими в множестве Т моментами времени tn+1 и tn был один и тот же для всех n. Тогда t называется временем такта, а моменты tn - тактами функционирования системы.

Фрагменты входного и выходного процессов дискретной системы представляются в виде пронумерованных последовательностей входных и выходных воздействий:

Хt0t = {x(l), x(l + 1),..., x(g)} = Хlg;

Уt0t = {у(l), у(l + 1),..., у(g)} = Уlg,

однозначно задаваемых номерами первого l и последнего g тактов функционирования системы. Тогда модель функционирования дискретной системы:

z (g) = α (lg, z (l), Хlg);

у (g) = β (lg, z (l), Хlg).

Если фрагмент входного процесса Хlg разбить на два подфрагмента и представить его как их объединение, то уравнения состояния и выхода в дискретной системе имеют вид:

z (n+1) = α (n, z (n), x (n), x (n+1));

у (n+1) = β (n, z (n), x (n), x (n+1)),

гдеαи β - функции действительных переменных n, z (n), x (n) и x (n+1).

Величина x (n+1) не влияет на z (n+1), если состояние системы изменяется с некоторой задержкой относительно момента поступления входного воздействия. При этом

z (n+1) = α (n, z (n), x (n)).

Выходное воздействие у (n+1) определяется значениями z и x в том же (n+1)– м такте, и потому

у (n) = β (n, z (n), x (n)).

Изучением свойств непрерывного характера занимается классическая математика. В дискретной математике отказываются от основополагающих понятий классической математики – предела и непрерывности.

Использование классической или дискретной математики зависит от задач исследований – какая модель явления рассматривается – дискретная или непрерывная. Основные разделы дискретной математики: математическая логика, вычислительная математика (численное интегрирование), теория графов (задачи анализа структур, экономические задачи, электротехнические задачи – трассировка), теория кодирования (хранение, обработка, передача информации), теория функциональных систем (описание функционирования сложных систем по функционированию их компонент, правила построения сложных управляющих систем).

Дискретное представление пространства и времени обуславливает дискретность фазовых переменных, которыми являются величины, характеризующие состояния элементов. Роль элементов и внутренних параметров выполняют системы и выходные параметры некоторых подсистем. Так, элементами ЭВМ можно считать арифметическое устройство, оперативную память, устройство ввода и вывода и т.п. Фазовые переменные, характеризующие состояния этих элементов, могут принимать только два значения: «занято», если в данный момент устройство работает, или «свободно», если устройство находится в состоянии ожидания.

Примерами выходных параметров служат вероятность обслуживания поступивших в систему заявок (сообщений), среднее время простоя в очереди на обслуживание, быстродействие устройства.

Для построения математических информационных моделей широко используют математическую логику, теорию массового обслуживания, методы теории автоматического управления.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 423; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.063 сек.