Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ижевск, 2010 5 страница





Фрагмент какой ткани на рисунке? Назовите структуры, обозначенные цифрами.

Рис. 35. Схема строения миелинового нервного волокна

1.Осевой цилиндр. 2. Контакты нейролеммоциов в области перехвата Ранвье. 3.Миелиновый слой. 4. Насечки миелина. 5. Цитоплазма нейролеммоцита.

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 2 до 20 мкм. Они состоят из осевого цилиндра (1), «одетого» оболочкой из нейролеммоцитов (шванновских клеток). Каждая шванновская клетка миелинизирует небольшой сегмент. Диаметр осевых цилиндров волокон этого типа значительно толще, а обо­лочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, — миелиновый слой и наружный, тонкий, состоящий из цитоплазмы, ядер нейролеммоцитов и нейролеммы.

Миелиновый слой (3) содержит значительное количество липидов, поэто­му при обработке осмиевой кислотой он окрашивается в темно-коричне­вый цвет. В миелиновом слое периодически встречаются узкие светлые ли­нии—насечки миелина (4), или насечки Шмидта — Лантермана. Через определенные интервалы (1—2 мм) видны участки волокна, лишенные миелинового слоя— перехваты Ранвье (2).

В процессе развития - аксон погружается в желобок на поверхности ней­ролеммоцита. Края желобка смыкаются. При этом образуется двойная склад­ка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. На электронных микро­фотографиях видны главные плотные и интрапериодальные линии. Первые образуются от слияния цитоплазматических поверхностей плазмолеммы нейролеммоцита (или олигодендроглиоцита в центральной нервной систе­ме), вторые — от контакта экстрацеллюлярных поверхностей соседних сло­ев плазмолеммы нейролеммоцита. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой. Осевой цилиндр в этом месте частично прикрыт интердигитирующими отростками нейролеммоцитов. Аксолемма (оболочка аксона) обладает в области перехвата значи­тельной электронной плотностью. Наличие большого числа митохондрий в этой области свидетельствует о высокой метаболической активности аксолеммы.

Отрезок волокна между смежными перехватами называется межузло­вым сегментом. Длина межузлового сегмента, так же как и толщина ми­елинового слоя, зависит от толщины осевого цилиндра. Насечка миелина (4) представляет собой участок миелинового слоя, где завитки мезаксона лежат неплотно друг к другу, образуя спиральный туннель, идущий сна­ружи внутрь и заполненный цитоплазмой нейролеммоцита (5), т.е. место расслоения миелина. Снаружи от нейролеммоцита располагается базальная мембрана.

Миелиновые волокна центральной нервной системыотличаются тем, что в них миелиновый слой формирует один из отростков олигодендроглиоцита. Остальные его отростки участвуют в образовании миелинового слоя дру­гих миелиновых волокон Миелиновые волокна центральной нервной системы не имеют насечек миелина, а нервные волокна не окружены базальными мем­бранами. Миелин в центральной нервной системе содержит миелиновый щелочной белок и протеолипидный белок.

Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1—2 м/с, тогда как тол­стые миелиновые — со скоростью 5—120 м/с. В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехвата. Таким образом, для миелиновых волокон характерноскачкообразное (сальтаторное) проведение возбуждения.

 

 

Назовите тип клетки? Аргументируйте вывод. Назовите структуры, обозначенные цифрами?

Рис. 36. Ультраструктура нейрона.

1.Плазмолемма 2. Ядро 3.Гранулярная эндоплазматическая сеть 4.Аппарат Гольджи 5.Лизосомы 6.Митохондрии 7.Элементы цитоскелета 8. Аксосоматический синапс 9. Кровеносный капилляр 10. Отростки нейронов.

Нейроны, являются морфологически и функционально самостоятельной единицей, но с помощью своих отростков (10) осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги. По количеству отростков различают: униполярные, имеющие только один аксон (у человека обычно не встречается); биполярные, имеющие один аксон и дендрит; мультиполярные, имеющие один аксон и много дендритов. Большинство нейронов человека содержит одно округлое ядро (2). При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляются в виде базофильных глыбок хроматофильная субстанция. Базофилия глыбок объясняется высоким содержанием рибонуклеопротеидов. Каждая глыбка состоит из цистерн гранулярной эндоплазматической сети (3), свободных рибосом и полисом, которые синтезируют белки цитозоля и интегральные белки плазмолеммы. В нейронах хорошо развит аппарат Гольджи (4), расположенный вокруг ядра, митохондрии (6), присутствуют лизосомы (5). Из элементов цитоскелета (7) в цитоплазме нейронов присутствуют нейрофиламенты и нейротубулы. Нейрофиламенты и нейротубулы участвуют в поддержании формы клеток, росте отростков и аксональном транспорте. Межнейрональные синапсы подразделяются на электрические и химические. К последним относится аксосоматический синапс (аксон одного нейрона контактирует с телом другого нейрона).

 

Что представлено на схеме? Назовите структуры, обозначенные цифрами.

Рис. 37. Химический синапс.

1.Пресинаптическая часть. 2.Постсинаптическая часть. 3.Синаптические пузырьки. 4.Митохондрии. 5.Микротрубочки, микрофиламенты. 6.Пресинаптическая мембрана. 7.Постсинаптическая мембрана с постсинаптическим уплотнением.

Химический синапс состоит из трех компонентов: пресинаптической части (1), постсинаптической части (2) и синаптической щели. Пресинаптическая часть образуется терминалью аксона. В ней содержатся митохондрии (4), агранулярная ЭПС, микрофиламенты, микротрубочки (5) и синаптические пузырьки (3) диаметром 20-65 нм, в которых находится нейромедиатор. Форма и характер содержимого пузырьков зависят от находящихся в них нейромедиаторов. Нейромедиаторы вырабатываются в теле нейрона и механизмом быстрого транспорта переносятся в окончания аксона. На внутренней стороне пресинаптической мембраны имеется пресинаптическое уплотнение, образованное белковой сетью. Синаптическая щель шириной 20-30 нм содержит элементы гликокаликса, которые обеспечивают адгезию и направленную диффузию медиатора. Постсинаптическая часть представлена постсинаптической мембраной (7), содержащей интегральные белки – рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена. В зависимости от того, является ли постсинаптической частью тело нейрона, дендрит или аксон, синапсы подразделяют на аксо-соматические, аксо-дендритические и аксо-аксональные. Под действием нервного импульса происходит открытие кальциевых каналов пресинаптической мембраны, Са2+ устремляется в аксон, мембраны синаптических пузырьков в присутствии Са2+ сливаются с пресинаптической мембраной, и содержащийся в них медиатор выделяется в синаптическую щель. Связываясь с рецепторами постсинаптической мембраны, медиатор вызывает ее деполяризацию и возникновение нервного импульса, или ее гиперполяризацию, обусловливая торможение. После экзоцитоза медиатора, большая часть его захватывается пресинаптической частью и используется повторно, поглощается окружающими глиальными клетками, некоторые медиаторы (например, ацетилхолин) расщепляются ферментами. Химический синапс обеспечивает передачу нервного импульса в одном направлении.

 

Назовите клетки представленные на схеме? Аргументируйте вывод? Назовите структуры, обозначенные цифрами?

Рис. 38. Форменные элементы крови.

1.Эритроцит. 2.Сегментоядерный нейтрофил. 3.Эозинофил. 4.Базофил. 5.Лимфоцит. 6.Моноцит. 7.Тромбоцит.

Эритроциты (1) – самые многочисленные клетки крови, утратившие в процессе дифференцировки ядро и практически все органеллы. Большинство эритроцитов (75-85%) имеют форму двояковогнутого диска. Поддержание формы эритроцитов обеспечивается осмотическим равновесием (работой ионных насосов плазмолеммы), элементами цитоскелета. Функции эритроцитов: перенос газов (преимущественно кислорода) с помощью гемоглобина, перенос других веществ на своей поверхности (гормонов, иммуноглобулинов и др.).

Нейтрофилы (2) – клетки с разной степенью дифференцировки, отличаются в мазках по форме ядра. Юные нейтрофилы имеют бобовидную форму ядра (составляют 0,5%). Палочкоядерные нейтрофилы имеют ядро в виде палочки или подковы (3,5%). Сегментоядерные нейтрофилы (2) (60-65%) имеют дольчатое ядро, состоящее из 2-5 сегментов. Зрелые нейтрофилы содержат немного митохондрий, значительное количество гранул гликогена, хорошо развитый цитоскелет. Неспецифические гранулы содержат катепсин, лизоцим. Специфические - содержат адгезивные белки. Функции нейтрофилов – повреждающее воздействие на микробы, фагоцитоз микроорганизмов, участие в специфических иммунных реакциях.

Эозинофилы (3) составляют (1-5%), содержат палочковидное ядро или сегментированное (два сегмента), в клетках хорошо развита гранулярная ЭПС, большое количество рибосом, гранул гликогена. В цитоплазме гранулы двух типов: неспецифические (азурофильные), аналогичны лизосомам и специфические - содержат кристаллоид, образованный белками (обуславливает эозинофилию). Функции: уничтожение микроорганизмов, паразитов (гельминтов). Способны к фагоцитозу.

Базофилы (4) составляют 0,1% от общего числа лейкоцитов циркулирующей крови. Чаще имеют трехдольное ядро. Содержат все виды органелл, свободные рибосомы и гликоген. Цитоплазма базофилов содержит специфические крупные метахроматические гранулы, которые содержат протеогликан, гистамин, пероксидазу; азурофильные гранулы - аналогичны лизосомам. При действии аллергена происходит быстрый экзоцитоз содержимого гранул с большим количеством биологически активных веществ, которые привлекают другие клетки к защитной реакции организма.

Лимфоциты (5) составляют 20-45% от общего числа лейкоцитов, циркулирующих в крови. Эти клетки играют центральную роль в иммунологических реакциях. Способны выходить из крови в ткань, затем снова возвращаться в кровь через лимфу. В крови находится лишь 2% лимфоцитов, 98% рассредоточено по другим органам и тканям. Лимфоциты имеют округлую форму с крупными ядром, занимающим до 20% обьема клетки. Цитоплазма слабо базофильна. Все органеллы содержатся в небольшом количестве, кроме цитоскелета, который хорошо развит. По размерам лимфоциты делят: малые (6-7 мкм) их 80-90% от общего количества лимфоцитов крови; средние (8-9 мкм.) -10% и большие (10-18 мкм) - в норме в крови отсутствуют. Более существенна функциональная классификация. Согласно ей лимфоциты подразделяются на Т и В клетки. Они различаются местом дифференцировки. Т-лимфоциты дифференцируются в тимусе. В-лимфоциты в красном костном мозге. Обеспечивают различные типы иммунитета: Т-лимфоциты преимущественно клеточный, а В-лимфоциты гуморальный иммунитет. Функционально Т- и В-лимфоциты делят на субпопуляции. Среди Т-лимфоцитов выделяют Т-хелперы - активируют эффекторные клетки; Т-киллеры – эффекторные цитотоксические клетки; Т-супрессоры – подавляют иммунный ответ, Т-памяти. В-лимфоциты дифференцируются в плазматические клетки, вырабатывающие иммуноглобулины (антитела) и клетки памяти, несущие информацию о встрече с антигеном. Т-лимфоциты составляют 70-80% в крови, В-лимфоциты - 10-20%.

Моноциты (6) - самые крупные лейкоциты (15 мкм) их 2-9% всех лейкоцитов циркулирующей крови. Образуются в красном костном мозге, а затем выходят в кровоток. Это незрелые клетки, находящиеся на пути из костного мозга в ткани. В тканях моноциты дифференцируются в подвижные макрофаги, их совокупность - система мононуклеарных фагоцитов. Моноциты содержат крупное бобовидное ядро, расположенное эксцентрично. Хроматин слабо конденсирован. В цитоплазме присутствуют типичные органеллы, много рибосом, пиноцитозные пузырьки, фагоцитарные вакуоли, многочисленные лизосомы.

Тромбоциты (7) - являются фрагментами цитоплазмы мегакариоцитов красного костного мозга, поэтому правильнее называть их кровяные пластинки. В мазке крови агрегируются поэтому выявляются в виде скоплений. Кровяные пластинки – это овальные, двояковогнутые тельца с небольшими отростками. Внутреннее содержимое состоит из двух частей. Центральная часть – грануломер содержит азурофильные зерна, наружная –гиаломер имеет гомогенную структуру и бледно – голубую окраску. Плазмолемма покрыта слоем гликокаликса. Он состоит из множества рецепторов, которые обусловливают прикрепление тромбоцита к эндотелию и склеивание тромбоцитов друг с другом (агрегация). Гиаломер представляет собой однородную тонкозернистую структуру с микротрубочками и филаментами по периферии. Микротрубочки формируют краевое кольцо – жесткий каркас тромбоцита. В грануломере содержатся гранулы гликогена, единичные рибосомы и гранулы нескольких типов: 1) азурофильные гранулы содержат вещества, участвующие в свертывании крови (фибронектин, фибриноген);2) гранулы с плотным матриксом содержат АТФ, ионы кальция, магния, гистамин, серотонин; 3) гранулы, содержащие гидролитические ферменты, соответствуют лизосомам. Функции тромбоцитов: 1) восстанавление сосудистой стенки при повреждении; 2) свертывание крови; 3) участвуют в иммунных реакциях (вырабатывают факторы хемотаксиса клеток в иммунной системе). Количество тромбоцитов 200-400×109 (л).

Определите тип нервного волокна, представленного на электронной микрофотографии, аргументируйте ответ.

Рис. 39. Поперечный срез безмиелинового нервного волокна. На снимке виден нейролеммоцит и множество отростков нейронов (осевых цилиндров), погруженных в его цитоплазму. На срезах осевых цилиндров заметны нейрофиламенты и нейротрубочки. В центре нейролеммоцита находится ядро. Трансмиссионная элктронная микроскопия. Ув. 9500.

 

Определите тип нервного волокна, представленного на электронной микрофотографии, аргументируйте ответ. Укажите тип электронной микроскопии.

Рис. 40. Поперечный срез миелинового нервного волокна. На данном препарате показан нейролеммоцит, образовавший миелиновую оболочку вокруг отростка нейрона (осевого цилиндра). Хорошо видна слоистая структура миелина. Осевой цилиндр содержит микротрубочки и микрофиламенты. В центре нейролеммоцита находится ядро. Снаружи волокно покрыто базальной мембраной. Вокруг нервного волокна находятся коллагеновые волокна эндоневрия. Трансмиссионная элктронная микроскопия. Ув. 9500.

 

 

Что представлено на схеме? Назовите структуры, обозначенные цифрами.

Рис. 41. Ретикулоциты в мазке крови (окраска крезилвиолетом).

1.Эритроцит. 2.Ретикулоцит. 3.Базофильная зернистость.

Эритроциты в организме ежедневно заменяются новыми. Ретикулоциты-это молодые эритроциты. В кровотоке в норме присутствует около 1% молодых эритроцитов, сохранивших в цитоплазме небольшое количество рибосом, обеспечивавших на более ранних стадиях развития синтез гемоглобина. Созревание ретикулоцитов происходит в течение 24-48 часов. При специальном окрашивании мазка крови бриллианткрезиловым синим рибосомы выявляются в виде базофильной зернистости, поэтому такие эритроциты назвали ретикулоцитами.

Содержание ретикулоцитов может повышаться как вследствие абсолютного увеличения количества ретикулоцитов в крови, так и сокращения массы циркулирующих эритроцитов (анемия). Если причиной анемии являются кровопотеря или разрушение эритроцитов, то возрастает секреция эритропоэтина и относительное количество ретикулоцитов поднимается выше нормального уровня (1%), а абсолютное число ретикулоцитов превышает величину 100 000 в мкл. Отсутствие ретикулоцитоза при анемии указывает на нарушение продукции эритроцитов в костном мозге из-за недостаточности питания или заболеваний костного мозга.

 

Что представлено на электронной микрофотографии? Аргументируйте ответ. Назовите тип электронной микроскопии.

Рис. 42. Эритроциты крови. На фотографии хорошо видна их двояковогнутая форма. Сканирующая электронная микроскопия. Ув. 6500.

 

 

Назовите клетку, изображенную на электронной микрофотографии. Укажите признаки, характерные для данного вида клеток. Определите тип электронной микроскопии.

Рис. 43. Эозинофильный гранулоцит (эозинофил) крови. Видны характерные гранулы, содержащие кристаллоид и сегментированное ядро (два сегмента). Трансмиссионная электронная микроскопия. Ув. 16400.

 

Назовите клетку, аргументируя вывод. Назовите структуры, обозначенные цифрами.

Рис. 44. Базофильный гранулоцит (базофил).

1.Базофильные гранулы. 2.Азурофильные гранулы. 3.Ядро. 4.Гранулярная эндоплазматическая сеть. 5.Комплекс Гольджи. 6.Митохондрии.

Базофилы – самая малочисленная группа гранулоцитов, их содержание в крови составляет 0,5-1,0 % от общего числа лейкоцитов. В крови базофилы циркулируют до 1 суток, а затем перемещаются в ткани. Строение и функции базофилов схожи с таковыми тучных клеток рыхлой волокнистой соединительной ткани. Размеры базофилов на мазках составляют 9-12 мкм. Ядро (3) клеток дольчатое (содержат 2-3 сегмента) или S – образное, относительно плотное, но с меньшим содержанием гетерохроматина, чем у нейтрофилов и эозинофилов. Ядра нередко трудно различимы, так как маскируются цитоплазматическими гранулами. В цитоплазме базофильных гранулоцитов под электронным микроскопом выявляются митохондрии (6), элементы цитоскелета, сравнительно слабо развитый синтетический аппарат и гранулы двух типов – специфические (базофильные) (1) и неспецифические (азурофильные) (2), представляют собой лизосомы).

Специфические (1) (базофильные) гранулы – крупные (диаметром 0,5-2,0 мкм), сферической формы, хорошо видны в световой микроскоп, окрашиваются основными красителями. Гранулы окружены мембраной, более зрелые гранулы обладают большей плотностью. При дегрануляции содержимое выделяется путем слияния мембраны гранул с плазмолеммой базофила или часть гранул выстраивается в цепочки, где они сливаются друг с другом, а далее их содержимое выделяется из клетки. Дегрануляция активированных базофилов происходит в присутствии ионов кальция. Выделение содержимого гранул может происходить в виде медленной секреции или массивной дегрануляции. Последнее обусловливает участие базофилов в аллергических реакциях. Содержимое базофильных гранул: гистамин (расширяет сосуды, увеличивает их проницаемость), гепарин (антикоагулянт), хондроитинсульфат, ферменты (протеазы, пероксидаза), хемотаксические факторы эозинофилов и нейтрофилов. Выделение биологически активных веществ из гранул (дегрануляция) происходит в ответ на связывание рецепторов базофилов с иммуноглобулинами класса Е, компонентами комплемента, бактериальными продуктами, цитокинами. Снижение содержания базофилов в крови чаще всего происходит вместе со снижением количества эритроцитов (опухоли, инфекции, воспалительные заболевания и др.).

 


Глава 3. ОРГАНЫ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

 


Определите тканевую и органную принадлежность клеток и опишите их. Назовите обозначенные структуры.

Рис. 1. Кардиомиоциты проводящей системы сердца.

А – Р-клетки (пейсмекеры) – водители ритма (I тип); Б – Переходные (промежуточные) клетки (II тип); В – клетки пучка Гиса и волокон Пуркинье (III тип); 1 – миофибриллы, 2 – ядра, 3 – митохондрии, 4 – гликоген.

Кардиомиоциты проводящей системы сердца (атипичные кардиомиоциты) обеспечивают его функцию автоматизма – способность вырабатывать электрические импульсы при отсутствии внешних раздражений. Атипичные кардиомиоциты генерируют биопотенциалы, проводят их и передают на сократительные кардиомиоциты. В их цитоплазме содержится мало неупорядоченно расположенных миофибрилл (1), поэтому отсутствует поперечная исчерченность; с помощью десмосом и щелевидных контактов формируют волокна. Выделяют три типа клеток.

Клетки I типа (А) (пейсмекеры, от англ. pace – темп, maker – создатель) составляют основу синусно-предсердного (синоатриального) узла – водителя ритма, расположенного в стенке правого предсердия между верхней полой веной и правым ушком, а также в небольшом количестве находятся в атриовентрикулярном узле. Несколько клеток заключены в единую базальную мембрану, к которой подходит много нервных окончаний (парасимпатическая система замедляет сердечные сокращения, симпатическая – ускоряет). Эти клетки меньше рабочих кардиомиоцитов, светлые, с небольшим содержанием миофибрилл (1) и крупными ядрами (2), с малым количеством органелл общего назначения (митохондрии – 3) и гликогена (4). Клетки синоатриального узла способны спонтанно генерировать биопотенциалы с частотой 60-90 импульсов в минуту в норме и передавать их на переходные клетки (II типа).

Клетки II типа (переходные) (Б) передают импульсы от клеток I типа на клетки III типа. Их локализации – преимущественно предсердно-желудочковый (атриовентрикулярный) узел, находящийся в стенке между предсердиями над правым предсердно-желудочковым клапаном. Эти клетки чуть больше клеток I типа, имеют крупное ядро (2), содержат небольшое количество миофибрилл (1), митохондрий (3) и гликогена (4). Способны генерировать импульсы (при выключении синоатриального узла) с частотой 40-60 в минуту.

Клетки III типа (В) - самые крупные клетки миокарда, находятся в предсердно-желудочковом пучке Гиса, идущего от предсердно-желудочкового узла в межжелудочковой перегородке и разделяющегося на правую и левую ножки, которые в миокарде желудочков ветвятся и называются волокона Пуркинье. При выключении вышестоящего атриовентрикулярного узла генерируют импульсы с частотой 20-40 в минуту. В клетках III типа содержится редкая неупорядоченная сеть миофибрилл (1), имеющих спиралевидный ход; многочисленные мелкие митохондрии (3), большое количество гликогена (4), т.е. активно проходят как аэробные так и анаэробные процессы. От клеток пучка и волокон Пуркинье биопотенциалы передаются на сократительные кардиомиоциты.

Цитолемма пейсмекерных клеток обладает особыми свойствами: в то время как в диастолу трансмембранный потенциал сократительных кардиомиоцитов не меняется, оставаясь на уровне -90 mV, в клетках проводящей системы происходит медленная спонтанная диастолическая деполяризация (самопроизвольное увеличением проницаемости для ионов Nа+, медленно входящих в клетки). В результате этого разность потенциалов между наружной и внутренней поверхностью мембраны пос­тепенно уменьшается. Как только разность достигает критического уровня (примерно —60 mV), проницаемость мембраны для ионов Na+ резко возрастает, что приводит к возникновению быстрой лавинообразной деполяризации клетки — ее возбуждению, которая является импульсом к возбуждению дру­гих клеток миокарда. На ЭКГ отражается сокращение только рабочих кардиомиоцитов.

 

Фрагмент какого органа изображен на рисунке? Какие ткани, клетки его образуют?

Рис. 2. Фрагмент миокарда (мышечной оболочки сердца). Рабочие кардиомиоциты (типичные, сократительные).

1.Сократительный кардиомиоцит. 2.Анастомоз между соседними кардиомиоцитами. 3.Капилляр. 4.Рыхлая волокнистая соединительная ткань. 5.Вставочный диск. 6.Базальная мембрана. 7.Ядра кардиомиоцитов. 8. Комплекс Гольджи. 9.Гранулярная ЭПС. 10.Миофибриллы. 11.Митохондрии.

Миокард - мышечная оболочка сердца. Состоит из тесно связанных между собой мышечных клеток – кардиомиоцитов (1). Клетки имеют удлиненную форму, близкую к цилиндрической, и соединяются друг с другом в цепочки, образуя функциональные волокна. Их поверхности покрыты базальной мембраной (6). Кардиомиоцит имеет обычно одно, реже два центрально расположенных овальных ядра (7), оксифильную цитоплазму. У полюсов ядра сосредоточены немногочисленные органеллы общего назначения (8,9), за исключением агранулярной эндоплазматической сети и митохондрий. Основную часть клетки занимают миофибриллы (10) – органеллы специального назначения, обеспечивающие сокращение. По строению они аналогичны миофибриллам скелетной мышечной ткани. Между ними располагаются многочисленные митохондрии (11) и цистерны гладкой эндоплазматической сети. В области соединения клеток образуются вставочные диски (5) – сложные межклеточные контакты, сочетающие плотные контакты (десмосомы) для прочности соединения кардиомиоцитов, интердигитации и щелевидные (нексусы) для передачи нервного импульса от клетки к клетке по волокну. При световой микроскопии межклеточные соединения представляют собой вид темных полос. Кардиомиоциты образуют анастомозы (2) формируя, таким образом, пространственную сеть. Благодаря анастомозам миокард представляеи собой единое целое. Между мышечными элементами располагаются прослойки рыхлой соединительной ткани (4), сосуды (3), нервы. Сердечная мышца прикрепляется к скелету сердца (фиброзные кольца вокруг атриовентрикулярных клапанов, клапанов аорты, легочной артерии).

 


Какой вид сосуда изображен на рисунке? Какими слоями и тканями образована его стенка. Где встречаются такие сосуды? Назовите структуры, обозначенные на схеме.

Рис. 3. Гемокапилляр соматического типа.

1.Эндотелиоцит. 2.Непрерывная базальная мембрана. 3.Перицит. 4.Адвентициальная клетка. 5.Эритроцит в просвете капилляра.

Кровеносные капилляры самые многочисленные и самые тонкие сосуды в организме. Основная функция – обменные процессы между кровью и тканями, которая обеспечивается тонкостью стенок капилляров, огромной площадью соприкосновения их с тканями, медленным кровотоком и низким кровяным давлением. Соматические капилляры – наиболее распространенный в организме тип гемокапилляров, они встречаются в ЦНС, сердечной и скелетных мышцах, легких. Их диаметр 4,5-8 мкм. Они участвуют в образовании гистогематических барьеров, которые препятствуют проникновению антигенов и токсинов из крови в ткани.

Стенка соматического капилляра состоит из трех слоев:

1.Эндотелиальный слой представлен одним пластом эндотелиальных клеток полигональной формы (1), лежащих на сплошной базальной мембране (2). Их размеры варьируют от 5 до 175 мкм. Наименьшая толщина составляет 200 нм, а в ядросодержащей зоне, которая выпячивается в просвет капилляра, достигает 1-2 мкм. Эндотелиоциты соединяются друг с другом с помощью плотных, десмосомальных, интердигитирующих и черепичных контактов. Эндотелий выполняет транспортную (обмен веществ между кровью и тканями), атромбогенную (синтез веществ, ингибирующих агрегацию тромбоцитов), барьерную функции, обеспечивает регуляцию сосудистого тонуса (вырабатывает факторы регуляции расслабления и сокращения гладких миоцитов), участвует в образовании базальной мембраны. Базальная мембрана – это тонкофибриллярная, полупроницаемая пластина толщиной 30-35 нм. Состоит из коллагена IV и V типов, гликопротеинов, фибронектина, ламинина и сульфатсодержащих протеогликанов. Выполняет опорную, разграничительную, барьерную функции.

2.Перициты (3) – соединительнотканные клетки отростчатой формы, окружающие капилляры в виде корзинки. Располагаются в расщеплениях базальной мембраны, на которой располагается эндотелий. В капиллярах соматического типа образуют хорошо выраженный средний слой.

3.Адвентициальный слой состоит из малодифференцированных клеток (адвентициальных), окруженных аморфным веществом и тонкими коллагеновыми волокнами. Адвентициальные клетки (4) являются предшественниками фибробластов, адипоцитов и остеобластов.

 

 

 

Какой вид сосуда изображен на рисунке? Какими слоями и тканями образована его стенка. Где встречаются такие сосуды? Назовите структуры, обозначенные на схеме.

Рис. 4. Гемокапилляр фенестрированного (висцерального) типа.

1.Эритроцит в просвете капилляра. 2.Эндотелиоцит. 3.Перицит. 4.Базальная мембрана. 5.Фенестры.

Кровеносные капилляры самые тонкостенные сосуды микроциркуляторного русла. Основная функция – транспорт веществ из крови в ткани и из тканей в кровь. Для всех капилляров характерен общий план строения. Капилляры висцерального типа имеют диаметр от 8 до 12 мкм. Характеризуются непрерывным слоем эндотелиоцитов (2) с фенестрами (5), лежащих на истонченной базальной мембране (4) и сниженным (по сравнению с соматическими капиллярами) количеством перицитов (3) и адвентициальных клеток. Фенестры – это сильно истонченные участки эндотелия (отверстия, затянутые клеточной мембраной), увеличивающие проницаемость для макромолекул (например, гормонов в эндокринных железах; питательных веществ, всасывающихся в тонкой кишке). Проницаемость увеличивается про воздействии гиалуронидазы, которая разрушает гиалуроновую кислоту (при этом увеличивается обмен веществ), а также повышается при воздействии гистамина.




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 3102; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.056 сек.