Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема 16.1.(Больцано, Коши) Пусть функция непрерывна на отрезке и принимает на его концах значения разных знаков. Тогда существует хотя бы одна точка такая, что




Вопрос 16: ПРОМЕЖУТОЧНЫЕ ЗНАЧЕНИЯ НЕПРЕРЫВНОЙ НА ОТРЕЗКЕ ФУНКЦИИ

Определение 16.1. Пусть функция определена на некотором множестве . Если она непрерывна в каждой точке этого множества, то говорят, что она непрерывна на множестве .Иными словами, функция непрерывна на множестве , если для любого числа и любого существует такое число , что для всех , удовлетворяющих неравенству выполняется неравенство .

$Пусть, для определённости, . Обозначим и рассмотрим точку . Если оказалось, что , то теорема верна при . Если же , то либо и в этом случае положим , либо и в этом случае положим . В обоих случаях получен отрезок , длина которого равна половине длины отрезка и на концах которого функция принимает значения разных знаков.

Разделим этот отрезок пополам точкой . Если , то теорема верна при . Если же , то либо и в этом случае положим , либо и в этом случае положим . Снова обоих случаях получен отрезок , длина которого равна половине длины отрезка и на концах которого функция принимает значения разных знаков.

Продолжим процесс деления отрезков пополам. При этом возникают две возможности. Либо на каком- то шаге получаем, для , и . Тогда теорема справедлива. Либо для всех выполняются неравенства . Тогда получается бесконечная система стягивающихся отрезков. Действительно, по построению каждый следующий отрезок вложен в предыдущий, а длина отрезка , равная , стремится к нулю при . Эти отрезки имеют общую точку, которую будем обозначать . Докажем, что .

Действительно, с одной стороны, , поэтому, по теореме о предельном переходе в неравенствах, , так как функция по условию непрерывна на отрезке и . С другой стороны, , так как . Полученные неравенства доказывают, что . #




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 440; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.