Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метрологические измерения




· Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.

· Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

2. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

По отношению к изменению измеряемой величины

· Статические и динамические.

 

По результатам измерений

· Абсолютное измерение — измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

· Относительное измерение — измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.

 

Классификация рядов измерений

 

По точности

· Равноточные измерения — однотипные результаты, получаемые при измерениях одним и тем же инструментом или им подобным по точности прибором, одним и тем же (или аналогичным) методом и в тех же условиях.

· Неравноточные измерения — измерения, произведённые в случае, когда нарушаются эти условия.

 

По числу измерений

· Однократное измерение — измерение выполненное один раз

 

· Многократное измерение — Измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений

 


 

Классификация измерения

Виды и методы измерений

Измерение - процесс нахождения значения физической величины опытным путем с помощью средств измерения.

 

Результатом процесса является значение физической величины Q = qU, где q - числовое значение физической величины в принятых единицах; U - единица физической величины. Значение физической величины Q, найденное при измерении, называют действительным.

 

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

 

Метод измерений - совокупность приемов использования принципов и средств измерений.

 

Средствами измерений (СИ) являются используемые технические средства, имеющие нормированные метрологические свойства.

 

Существует различные виды измерений. Классификацию видов измерения проводят, исходя из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

 

· По характеру зависимости измеряемой величины от времени измерения выделяют статические и динамические измерения.

 

Статические - это измерения, при которых измеряемая величина остается постоянной во времени. Такими измерениями являются, например, измерения размеров изделия, величины постоянного давления, температуры и др.

 

Динамические - это измерения, в процессе которых измеряемая величина изменяется во времени, например, измерение давления и температуры при сжатии газа в цилиндре двигателя.

· По способу получения результатов, определяемому видом уравнения измерений, выделяют прямые, косвенные, совокупные и совместные измерения.

 

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q - искомое значение измеряемой величины, а X - значение, непосредственно получаемое из опытных данных. Примерами таких измерений являются: измерение длины линейкой или рулеткой, измерение диаметра штангенциркулем или микрометром, измерение угла угломером, измерение температуры термометром и т.п.

 

Косвенные - это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями. Таким образом, значение измеряемой величины вычисляют по формуле Q = F(x1, x2... xN), где Q - искомое значение измеряемой величины; F - известная функциональная зависимость, x1, x2, …, xN - значения величин, полученные прямыми измерениями. Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения, измерение среднего диаметра резьбы методом трёх проволочек и т.д. Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить прямым измерением. Встречаются случаи, когда величину можно измерить только косвенным путём, например размеры астрономического или внутриатомного порядка.

 

Совокупные - это такие измерения, при которых значения измеряемых величин определяют по результатам повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Значение искомой величины определяют решением системы уравнений, составляемых по результатам нескольких прямых измерений. Примером совокупных измерений является определение массы отдельных гирь набора, т.е. проведение калибровки по известной массе одной из них и по результатам прямых измерений и сравнения масс различных сочетаний гирь. Рассмотрим пример совокупных измерений, который заключается в проведении калибровки разновеса, состоящего из гирь массой 1, 2, 2*, 5, 10 и 20 кг. Ряд гирь (кроме 2*) представляет собой образцовые массы разного размера. Звездочкой отмечена гиря, имеющая значение, отличное от точного значения 2 кг. Калибровка состоит в определении массы каждой гири по одной образцовой гире, например по гире массой 1 кг. Меняя комбинацию гирь, проведем измерения. Составим уравнения, где цифрами обозначим массу отдельных гирь, например 1обр обозначает массу образцовой гири в 1 кг, тогда: 1 = 1обр + a; 1 + 1обр = 2 + b; 2* = 2 + c; 1 + 2 + 2* = 5 + d и т.д. Дополнительные грузы, которые необходимо прибавлять к массе гири указанной в правой части уравнения или отнимать от неё для уравновешивания весов, обозначены a, b, c, d. Решив эту систему уравнений, можно определить значение массы каждой гири.

 

Совместные - это измерения, производимые одновременно двух или нескольких разноименных величин для нахождения функциональной зависимости между ними. Примерами совместных измерений являются определение длины стержня в зависимости от его температуры или зависимости электрического сопротивления проводника от давления и температуры.

· По условиям, определяющим точность результата, измерения делятся на три класса.

 

1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.

 

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

 

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

· В зависимости от способа выражения результатов измерений различают абсолютные и относительные измерения.

 

Абсолютным и называют измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант. Примерами абсолютных измерений являются: определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.

 

Относительными называют измерения, при которых искомую величину сравнивают с одноименной величиной, играющей роль единицы или принятой за исходную. Примерами относительных измерений являются: измерение диаметра обечайки по числу оборотов мерного ролика, измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 куб.м воздуха к количеству водяных паров, которое насыщает 1 куб.м воздуха при данной температуре.

· В зависимости от способа определения значений искомых величин различают два основных метода измерений метод непосредственной оценки и метод сравнения с мерой.

 

Метод непосредственной оценки - метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия. Примерами таких измерений являются: измерение длины с помощью линейки, размеров деталей микрометром, угломером, давления манометром и т. д.

 

Метод сравнения с мерой - метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения диаметра калибра оптиметр устанавливают на нуль по блоку концевых мер длины, а результат измерения получают по показанию стрелки оптиметра, являющегося отклонением от нуля. Таким образом, измеряемая величина сравнивается с размером блока концевых мер.Существуют несколько разновидностей метода сравнения:

 

а ) метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами, например измерение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора;

 

б) дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на нуль по блоку концевых мер длины;

 

в) нулевой метод - также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Этим методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием;

 

г) при методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов. Например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал.

 

· В зависимости от способа получения измерительной информации, измерения могут быть контактными и бесконтактными.

· В зависимости от типа, применяемых измерительных средств, различают инструментальный, экспертный, эвристический и органолептический методы измерений.

 

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

 

Экспертный метод оценки основан на использовании суждений группы специалистов.

 

Эвристические методы оценки основаны на интуиции.

 

Органолептические методы оценки основаны на использовании органов чувств человека. Оценка состояния объекта может проводиться поэлементными и комплексными измерениями. Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности. Например, эксцентриситета, овальности, огранки цилиндрического вала. Комплексный метод характеризуется измерением суммарного показателя качества, на который оказывают влияние отдельные его составляющие. Например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; контроль положения профиля по предельным контурам и т. п.


Классификация средств измерения.

Меры, измерительные преобразователи

К средствам измерений относятся: меры, измерительные приборы, измерительные преобразователи, измерительные установки, измерительные системы, которые подразделяются по назначению, принципу действия, метрологическим характеристикам и другим параметрам.

 

Средства измерения принято классифицировать по виду, принципу действия и метрологическому назначению.

 

Различают следующие виды средств измерений: меры, измерительные устройства, которые подразделяются на измерительные приборы и измерительные преобразователи; измерительные установки и измерительные системы.

 

Мера - это средство измерений, предназначенное для воспроизведения физической величины заданного размера.

 

Измерительный прибор - средство измерения, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

 

Измерительный преобразователь - средство измерения, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем.

 

Измерительная установка - совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем и расположенная на одном месте.

Измерительная система - совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических сигналах управления.

 

По назначению измерительные приборы разделяют на универсальные, специальные и для контроля.

 

По конструктивному устройству измерительные приборы делят на:

механические, оптические, электрические и пневматические и др.

 

По степени автоматизации различают измерительные приборы ручного действия, механизированные, полуавтоматические и автоматические.

 

Универсальные измерительные приборы применяют в контрольно-измерительных лабораториях всех типов производств, а также в цехах единичных и мелкосерийных производств.

 

 

Универсальные измерительные приборы подразделяются:

 

1. на механические:

 

· Простейшие инструменты - проверочные измерительные линейки, щупы, образцы шероховатости поверхности;

 

· Штангенинструменты - штангенциркуль, штангенглубиномер, штан-генрейсмас, штангензубомер;

 

· Микрометрические инструменты - Микрометр, микрометрический нутромер, микрометрический глубиномер;

 

· Приборы с зубчатой передачей - индикаторы часового типа; Рычажно-механические - миниметры, рычажные скобы;

 

2. оптические:

 

· Вертикальные и горизонтальные оптиметры, малый и большой инструментальные микроскопы, универсальный микроскоп, концевая машина, проекторы, интерференционные приборы;

 

3. пневматические:

 

· длинномеры (ротаметры);

 

4. электрические:

 

· электроконтактные измерительные головки, индуктивные приборы, профилографы, профилометры, кругломеры.

 

Специальные измерительные приборы предназначены для измерения одного или нескольких параметров деталей определенного типа; например приборы для измерения (контроля) параметров коленчатого вала, распределительного вала, параметров зубчатых колес, диаметров глубоких отверстий.

 

Приборы для контроля геометрических параметров по назначению делят на приборы для приемочного (пассивного) контроля (калибры), для активного контроля в процессе изготовления деталей и приборы для статистического анализа и контроля.

 

 

Измерительные приборы, измерительные установки и системы, измерительные принадлежности

Измерительный инструмент - инструмент, предназначенный для измерения линейных объектов.

 

Измерительный инструмент:

 

· Глубиномеры индикаторные и микрометрические

· Индикаторы и измерительные головки

· Концевые меры длины (КМД)

· Линейки измерительные и поверочные

· Микрометры

· Нутромеры индикаторные и микрометрические

· Плиты поверочные

· Призмы поверочные

· Рулетки измерительные

· Скобы индикаторные и рычажные

· Стенкомеры

· Стойки

· Толщиномеры индикаторные

· Угломеры

· Угольники лекальные и слесарные (УЛ,УЛП,УП,УШ)

· Щупы и шаблоны

· Штангенглубиномеры

· Штангензубомеры

· Штангенрейсмасы

· Штангенциркули

· Штативы

 

Измерительные принадлежности - устройства, служащие для обеспечения необходимых внешних условий для выполнения измерений с требуемой точностью.

Измерительные принадлежности поддерживают неизменной измеряемую величину путем создания защиты от воздействия влияющих величин.

 

Средство измерений - техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства.

 

Средства измерений различаются:

 

· по метрологическому назначению - на рабочие и метрологические;

· по конструктивному исполнению - на меры, измерительные приборы, измерительные установки, измерительные системы и измерительные комплексы;

· по уровню автоматизации - на неавтоматические, автоматизированные и автоматические;

· по уровню стандартизации - на стандартные и нестандартные;

· по отношению к измеряемой величине - на основные и вспомогательные.

 

Измерительная система - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству.

Измерительная система предназначена для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и/или использования в автоматических системах управления. В зависимости от назначения измерительные системы подразделяются на:

 

Измерительная информационная система - измерительная система, предназначенная для целей представления измерительной информации в виде необходимом потребителю.

 

Измерительная контролирующая система - измерительная система, предназначенная для целей контроля параметров технологического процесса, явления, движущегося объекта или его состояния.

Измерительная управляющая система - измерительная система, предназначенная для целей автоматического управления технологическим процессом, автоматическим производством, движущимся объектом и т.д. Для целей управления измерительная управляющая система содержит:

- элементы сопоставления параметров измерительной информации с нормальными; и

- элементы обратной связи, которые дают возможность приводить к номиналу параметры процесса, подлежащего управлении


 




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 912; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.08 сек.