Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры решения задач. • Основной закон радиоактивного распада




Радиоактивность

• Основной закон радиоактивного распада

N=N0e-λt,

где N — число нераспавшихся атомов в момент времени t; N0— число нераспавшихся атомов в момент, принятый за начальный (при t=0); е — основание натуральных логарифмов; λ постоян­ная радиоактивного распада.

• Период полураспада T1/2 — промежуток времени, за который число нераспавшихся атомов уменьшается в два раза. Период полу­распада связан с постоянной распада соотношением

T1/2 = ln2/λ = 0,693/λ.

• Число атомов, распавшихся за время t,

∆N = N0 - N = N0, (1 - е-λt).

Если промежуток времени ∆t << T1/2. то для определения числа распавшихся атомов можно применять приближенную формулу

∆N ≈ λN∆t

Среднее время жизни т радиоактивного ядра — промежуток времени, за который число нераспавшихся ядер уменьшается в е раз:

τ = 1/λ

• Число атомов, содержащихся в радиоактивном изотопе,

N = (m/M)×NA

где m — масса изотопа; М — его молярная масса; NA постоян­ная Авогадро.

• Активность А нуклида в радиоактивном источнике (актив­ность изотопа) есть величина, равная отношению числа dN ядер, распавшихся в изотопе, к промежутку времени dt, за которое произошел распад. Активность определяется по формуле

A = -dN/dt = λN,

или после замены N по основному закону радиоактивного распада

A = λN0e-λt

Активность изотопа в начальный момент времени (t=0)

A0 = λN0.

Активность изотопа изменяется со временем по тому же закону, что и число нераспавшихся ядер:

A = A0e-λt

• Массовая активность а радиоактивного источника есть величина равная отношению его активности A к массе т этого источни­ка, т. е.

a = A/m.

● Если имеется смесь ряда радиоактивных изотопов, образую­щихся один из другого, и если постоянная распада λ первого члена ряда много меньше постоянных всех остальных членов ряда, то в смеси устанавливается состояние радиоактивного равновесия, при котором активности всех членов ряда равны между собой:

λ1N1 = λ2N2 = … = λkNk..

 

Пример 1. На толстую стек­лянную пластинку, покрытую очень тонкой пленкой, показа­тель преломления n2 вещества которой равен 1,4, падает нор­мально параллельный пучок монохроматического света (λ=0,6 мкм). Отраженный свет максимально ослаблен вследст­вие интерференции. Определить толщину d пленки.

 

Рис. 2

Решение. Из световой волны, падающей на пленку, выделим узкий пучок SA. Ход этого пучка в случае, когда угол падения ε1 0, показан на рис. 2. В точках A и В падающий пучок частич­но отражается и частично преломляется. Отраженные пучки света AS1 и BCS1 падают на собирающую линзу L, пересекаются в ее фокусе F и интерферируют между собой.

Так как показатель преломления воздуха (n1= 1,00029) меньше показателя преломления вещества пленки (n2 =1,4), который, в свою очередь, меньше показателя преломления стекла (n3 =1,5), то в обоих случаях отражение происходит от среды оптически более плотной, чем та среда, в которой идет падающая волна. Поэтому фаза колебания пучка света AS1 при отражении в точке A изменя­ется на π рад и точно так же на π рад изменяется фаза колебаний пучка света BCS2 при отражении в точке В. Следовательно, резуль­тат интерференции этих пучков света при пересечении в фокусе F линзы будет такой же, как если бы никакого изменения фазы коле­баний ни у того, ни у другого пучка не было.

Как известно, условие максимального ослабления света при интерференции в тонких пленках состоит в том, что оптическая раз­ность хода Δ интерферирующих волн должна быть равна нечетному числу полуволн; Δ=(2 k +1)(λ /2).

Как видно из рис. 2, оптическая разность хода

Δ= l2n2— l1n1 =(| АВ | +| ВС |) п2—|AD | n1.

Следовательно, условие минимума интенсивность света примет вид

(| АВ | +| ВС |) п2—|AD | n1 =(2 k +1)(λ /2).

Если угол падения ε1 будет уменьшаться, стремясь к нулю, то AD 0 и (| АВ|+|ВС| 2d, где d— толщина пленки. В пределе при ε1=0 будем иметь

Δ=2 dn2 =(2 k +1)(λ /2),

откуда искомая толщина пленки

.

Полагая k =0,1,2,3,…, получим ряд возможных значений толщины пленки:

и т.д.

Пример 2. На стеклянный клин нормально к его грани падает монохроматический свет с длиной волны λ =0,6 мкм. В возникшей при этом интерференционной картине на отрезке длиной l =1 см наблюдается 10 полос. Определить преломляющий угол θ клина.

Решение. Параллельный пучок света, падая нормально к грани клина, отражается как от верхней, так и от нижней грани. Эти пучки когерентны, и поэтому наблюдается устойчивая картина интерференции. Так как интерференционные полосы наблюдаются при малых углах клина, то отраженные пучки света 1 и 2 (рис. 3) будут практически параллельны.

Темные полосы видны на тех участках клина, для которых раз­ность хода кратна нечетному числу половины длины волны;

Δ=(2k+1) (λ/2), где k =0,1,2,…. (1)

Разность хода Δ двух волн складывается из разности оптических длин путей этих волн (2dn cosε2’) и половины длины волны (λ/2).

Рис. 3

Величина λ/2 представляет собой добавочную разность хода, воз­никающую при отражении волны от оптически более плотной среды. Подставляя в формулу (1) значение разности хода Δ, получим

2dkn cos ε 2’ + λ/2 = (2k + 1) (λ/2), (2)

где п — коэффициент преломления стекла (n =l,5); dk толщина клина в том месте, где наблюдается темная полоса, соответствую­щая номеру k; ε2’—угол преломления.

Согласно условию, угол падения равен нулю, следовательно, и угол преломления ε2 равен нулю, a cos ε2 =1. Раскрыв скобки в правой части равенства (2), после упрощения получим

2dkn = (3)

Пусть произвольной темной полосе номера k соответствует опре­деленная толщина клина в этом месте dk а темной полосе номера k+10 соответствует толщина клина dk+10. Согласно условию за­дачи, 10 полос укладываются на отрезке длиной l =1 см. Тогда ис­комый угол (рис. 3) будет равен

θ=(dk+10 – dk)/ l, (4)

где из-за малости преломляющего угла sin θ = θ (угол θ выражен в радианах).

Вычислив dk и dk+10 из формулы (3), подставив их в формулу (4) и произведя преобразования, найдем

θ=5 λ/(nl).

После вычисления получим

θ=2∙10-4paд.

Выразим θ в градусах. Для этого воспользуемся соотношением между радианом и секундой (см. табл. 6); 1 рад=2,06"∙105, т. е.

θ=2∙10-4∙2,06''∙105=41,2'',

или в соответствии с общим правилом перевода из радиан в градусы

θград = θрад, θ = .

Искомый угол равен 41,2".

Пример 3. На диафрагму с круглым отверстием радиусом r =1 мм падает нормально параллельный пучок света длиной волны λ=0,05 мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние bmax от центра от­верстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пят­но.

Решение. Расстояние, при котором будет видно темное пят­но, определяется числом зон Фре­неля, укладывающихся в отвер­стии. Если число зон четное, то в центре дифракционной картины бу­дет темное пятно.

Число зон Френеля, помещаю­щихся в отверстии, убывает по мере удаления экрана от отверстия. Наименьшее четное число зон равно двум. Следовательно, максимальное расстояние, при котором еще будет наблюдаться темное пятно Рис. 4 в центре экрана, определяется условием, согласно которому в отверстии должны поместиться две зоны Френеля.

Из рис. 4 следует, что расстояние от точки наблюдения O на экране до края отверстия на 2 ( λ /2) больше, чем расстояние bmax.

По теореме Пифагора получим




Поделиться с друзьями:


Дата добавления: 2015-03-31; Просмотров: 4059; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.