Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Факторы




После того как выбран объект исследования и параметр оптимизации, нужно включить в рассмотрение все существенные факторы, которые могут влиять на процесс. Если какой-либо существенный фактор окажется неучтенным, то это может привести к неприятным последствиям. Так, если неучтенный фактор произвольно флуктуировал — принимал случайные значения, которые экспериментатор не контролировал, — это значительно увеличит ошибку опыта.

Рассмотрим процесс планирования эксперимента применительно к такой цели моделирования как отыскание функциональной зависимости между переменными модели. В зависимости от своей роли каждая переменная может быть либо фактором, либо реакцией. Если изучается влияние переменной x на переменную y, то x – фактор, а y – реакция.

Каждый фактор может принимать в опыте одно из нескольких значений. Такие значения будем называть уровнями. Может оказаться, что фактор способен принимать бесконечно много значений (непрерывный ряд). Однако на практике точность, с которой устанавливается некоторое значение, не беспредельна. Поэтому мы вправе считать, что всякий фактор имеет определенное число дискретных уровней. Это соглашение существенно облегчает построение «черного ящика» и эксперимента, а также упрощает оценку их сложности.

Каждый из факторов имеет верхний и нижний уровни, расположенные симметрично относительно некоторого нулевого уровня. Точка в факторном пространстве, соответствующая нулевым уровням всех факторов, называется центром плана. Интервалом варьирования фактора называется некоторое число J, прибавление которого к нулевому уровню дает верхний уровень, а вычитание – нижний.

Фиксированный набор уровней факторов в одном из опытов эксперимента представляет собой лишь одну комбинацию уровней факторов, которая определяет одно из возможных состояний системы. Каждому фиксированному набору уровней факторов соответствует точка в многомерном пространстве, называемом факторным пространством. Из-за временных ограничений эксперимент выполняют не во всех точках факторного пространства, а лишь в точках допустимой области, что показано для случая двух факторов x1 и x2 на рис.1.3 (плоскость x10x2).

 

 

Рисунок 1.3 – Геометрическое представление поверхности реакции

 

Для этого находят минимальное число испытаний (число точек факторного пространства), которое обеспечивает выявление функциональной зависимости:

с требуемой точностью и достоверностью.

При поддержании фактора на некотором фиксированном уровне может быть получено ложное представление об оптимуме, так как нет гарантии, что фиксированный уровень является оптимальным. Как же преодолеть большое число опытов? Чем больше факторов, тем больше опытов». Действительно, число опытов растет по показательной функции. Размерность факторного пространства увеличивается, и математики в таких случаях говорят о «проклятии размерности». Рекомендации о том, как преодолеть «проклятие размерности», вы найдете ниже.

Если число факторов больше пятнадцати, нужно обратиться к методам отсеивания несущественных факторов. Здесь можно воспользоваться формализацией априорной информации [1], методом случайного баланса, планами Плаккета-Бермана и др. Иногда эти планы применяются и при меньшем числе факторов.

Определение фактора. Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. Факторы соответствуют способам воздействия на объект исследования. Так же, как и параметр оптимизации, каждый фактор имеет область определения. Мы будем считать фактор заданным, если вместе с его названием указана область его определения.

Под областью определения понимается совокупность всех значений, которые в принципе может принимать данный фактор. Ясно, что совокупность значений фактора, которая используется в эксперименте, является подмножеством из множества значений, образующих область определения. Область определения может быть непрерывной и дискретной. Однако в тех задачах планирования эксперимента, которые мы собираемся рассматривать, всегда используются дискретные области определения. Так, для факторов с непрерывной областью определения, таких, как температура, время, количество вещества и т. п., всегда выбираются дискретные множества уровней.

В практических задачах области определения факторов, как правило, ограничены. Ограничения могут носить принципиальный либо технический характер. Произведем классификацию факторов в зависимости от того, является ли фактор переменной величиной, которую можно оценивать количественно: измерять, взвешивать, титровать и т. п., или же он — некоторая переменная, характеризующаяся качественными свойствами.

По этому признаку факторы делят на количественные и качественные. Качественные факторы — это разные вещества, разные технологические способы, аппараты, исполнители и т. д. Хотя качественным факторам не соответствует числовая шкала в том смысле, как это понимается для количественных факторов, однако можно построить условную порядковую шкалу, которая ставит в соответствие уровням качественного фактора числа натурального ряда, т. е. производит кодирование. Порядок уровней может быть произволен, но после кодирования он фиксируется.

Требования, предъявляемые к факторам. В первую очередь при планировании эксперимента определяют основные свойства факторов, поскольку они могут быть управляемые и неуправляемые, наблюдаемые и ненаблюдаемые, количественные и качественные, фиксированные и случайные.

Фактор называется управляемым, если его уровни целенаправленно выбираются исследователем в процессе эксперимента. Это значит, что экспериментатор, выбрав нужное значение фактора, может его поддерживать постоянным в течение всего опыта, т. е. может управлять фактором. В этом состоит особенность «активного» эксперимента. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора.

Фактор называется наблюдаемым, если его значения наблюдаются и регистрируются. Обычно в машинном эксперименте наблюдаемые факторы являются и управляемыми, так как нерационально управлять фактором, не наблюдая его. Но неуправляемый фактор также можно наблюдать. Например, на этапе проектирования конкретной системынельзя управлять заданными воздействиями внешней среды, но можно наблюдать их в машинном эксперименте. Наблюдаемые неуправляемые факторы называются

сопутствующими.

Представьте себе, что вы изучаете процесс синтеза аммиака. Колонна синтеза установлена на открытой площадке. Является ли температура воздуха фактором, который можно включить в планирование эксперимента? Температура воздуха — фактор неуправляемый. Мы еще не научились делать погоду по заказу. А в планировании могут участвовать только те факторы, которыми можно управлять, — устанавливать и поддерживать на выбранном уровне в течение опыта или менять по заданной программе. Температурой окружающей среды в данном случае управлять невозможно. Ее можно только контролировать.

Фактор относится к изучаемым факторам, если он включен в модельдля изучения свойств системы, а не для вспомогательных целей, например для увеличения точности эксперимента.

Фактор будет количественным, если его значения – числовые величины, влияющие на реакцию, а в противном случае фактор называется качественным. Например, в модели системы, формализуемой в виде схемы массового обслуживания (Q -схемы), количественными факторами являются интенсивности входящих потоков заявок, интенсивности потоков обслуживания, емкости накопителей, количество обслуживающих каналов и т.д., а качественными факторами - дисциплины постановки в очередь, выбора из очереди, обслуживания заявок каналами и т.д. Качественным факторам в отличие от количественных соответствует условная порядковая шкала, а не числовая.

Фактор называется фиксированным, если в эксперименте исследуются все интересующие экспериментатора значения фактора, а если экспериментатор исследует только некоторую случайную выборку из совокупности интересующих значений факторов, то фактор называется случайным.

Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения (уровни). Такое определение фактора будем называть операциональным. Так, если фактором является давление в некотором аппарате, то совершенно необходимо указать, в какой точке и с помощью какого прибора оно измеряется и как оно устанавливается. Введение операционального определения обеспечивает однозначное понимание фактора.

С операциональным определением связаны выбор размерности фактора и точность его фиксирования. Мы привыкли считать, что выбор размерности фактора не представляет особой трудности. Экспериментатор хорошо ориентируется в том, какую размерность нужно использовать. Это действительно так в тех случаях, когда существует устоявшаяся традиция, построены измерительные шкалы, приборы, созданы эталоны и т. д. Так обстоит дело при измерении температуры, времени, давления и т. д.

Но бывает, что выбор размерности превращается в весьма трудную проблему выбора измерительных шкал, сложность которой далеко выходит за рамки нашего рассмотрения. Замена одной измерительной шкалы другой называется преобразованием шкал. Оно может быть использовано для упрощения модели объекта. Точность замера факторов должна быть по возможности более высокой. Степень точности определяется диапазоном изменения факторов.

При изучении процесса, который длится десятки часов, нет необходимости учитывать доли минуты, а в быстрых процессах необходимо учитывать, быть может, доли секунды. Если факторы измеряются с большой ошибкой или особенность объекта исследования такова, что значения факторов трудно поддерживать на выбранном уровне (уровень фактора «плывет»), то экспериментатору следует обратиться к конфлюэнтному анализу [8, 9].

Факторы должны быть непосредственными воздействиями на объект. Факторы должны быть однозначны. Трудно управлять фактором, который, является функцией других факторов. Но в планировании могут участвовать сложные факторы, такие, как соотношения между компонентами, их логарифмы и т. п.

Необходимость введения сложных факторов возникает при желании представить динамические особенности объекта в статической форме. Пусть, например, требуется найти оптимальный режим подъема температуры в реакторе. Если относительно температуры известно, что она должна нарастать линейно, то в качестве фактора вместо функции (в данном случае линейной) можно использовать тангенс угла наклона, т. е. градиент. Положение усложняется, когда исходная температура не зафиксирована. Тогда ее приходится вводить в качестве еще одного фактора.

Для более сложных кривых пришлось бы ввести большее число факторов (производные высоких порядков, координаты особых точек и т. д.). Поэтому целесообразно пользоваться сложным качественным фактором — номером кривой. Различные варианты кривых рассматриваются в качестве уровней. Это могут быть разные режимы термообработки сплавов, переходные процессы в системах управления и т. д. Отсюда ясно, как можно сложный фактор-функцию представить с помощью простых однозначных факторов.

Требования к совокупности факторов. При планировании эксперимента обычно одновременно изменяется несколько факторов. Поэтому очень важно сформулировать требования, которые предъявляются к совокупности факторов. Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Это очень важное требование. Представьте себе, что вы поступили легкомысленно, не обратили внимания на требование совместимости факторов и запланировали такие условия опыта, которые могут привести к взрыву установки или осмолению продукта. Согласитесь, что такой результат очень далек от целей оптимизации.

Несовместимость факторов может наблюдаться на границах областей их определения. Избавиться от нее можно сокращением областей. Положение усложняется, если несовместимость проявляется внутри областей определения. Одно из возможных решений — разбиение на подобласти и решение двух отдельных задач.

При планировании эксперимента важна независимость факторов, т. е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент. Итак, мы подошли ко второму требованию — отсутствию корреляции между факторами. Требование некоррелированности не означает, что между значениями факторов нет никакой связи. Достаточно, чтобы связь не была линейной.

Таким образом, для планирования эксперимента необходимо:

1. Выделить факторы, влияющие на искомые характеристики и на их основе описать исследуемую функциональную зависимость;

2. Установить диапазон изменения выделенных факторов ;

3. Определить координаты точек факторного пространства, в которых необходимо провести эксперимент;

4. Оценить необходимое число реализаций и их порядок в эксперименте.

Решение первых трех задач, позволяющее отыскать фиксированное число опытов для получения наиболее достоверного значения функции , называют стратегическим планированием. Решение четвертой задачи называют тактическим планированием, поскольку требуется определить минимальное число испытаний, при котором статистическая оценка искомой функции может быть получена с заданной точностью.

Прежде чем приступить к решению этих задач, остановимся на выборе модели эксперимента более подробно.

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 4420; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.