Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Макс Гендель 25 страница




Гипоксия той или иной степени сопровождает многие (если не все) формы патологии мозга. Являясь типовым и неспецифическим процессом, она, однако, может вносить значительный вклад в его развитие. Вместе с тем умеренная гипоксия может стимулировать метаболические и пластические процессы в нейроне, способствовать адаптации и повышению резистентности, повышать трофический и пластический потенциал нейрона, усиливать адаптационные возможности мозга. Дозированная гипоксия применяется для профилактики и лечения ряда заболеваний центральной нервной системы.

 

20.3.7. Синаптическая стимуляция и повреждение нейронов

Возбуждающая синаптическая стимуляция может играть важную роль в развитии патологии нейрона. Усиленная и длительная синаптическая стимуляция сама по себе вызывает функциональное перенапряжение нейрона, его стресс, который может завершиться дегенерацией внутриклеточных структур. Стрессорные повреждения усиливаются при нарушениях микроциркуляции и мозгового кровообращения, при действии токсических факторов.

Первостепенное значение синаптическая стимуляция имеет при развитии аноксических (ишемических) повреждений. Культура тканей нейронов становится чувствительной к аноксии лишь после установления синаптических контактов между нейронами. Весьма чувствительны к аноксии нейроны коры и гиппокампа, в которых имеется высокая плотность возбуждающих синаптических входов. Синаптическая стимуляция реализуется через действие возбуждающих аминокислот (глутамат, аспартат, L-гомоцистеинат), причем эти повреждения подобны тем, которые возникают при ишемии и связаны с увеличенным содержанием внутриклеточного Са2+. Этот эффект известен как нейротоксическое (или цитотоксическое) действие возбуждающих аминокислот. С синаптической гиперактивацией, действием возбуждающих аминокислот и гипоксией связаны повреждение и гибель нейронов при эпилептическом статусе и в постишемическом периоде. При этом к патогенному действию указанных факторов присоединяется энергетический дефицит.

В связи с изложенным становятся понятными благоприятные эффекты (т.е. ослабление синаптического воздействия) уменьшения функ-циональной нагрузки, предотвращение дополнительных раздражений, «охранительное», по И.П. Павлову, торможение обратимо поврежденных нейронов.

 

20.3.8. Нарушение структурного гомеостаза нейрона

Значительную роль в патологии нейрона играют нарушения внутриклеточного структурного гомеостаза. В норме процессы изнашивания и распада внутриклеточных структур уравновешиваются процессами их обновления и регенерации. Совокупность этих процессов составляет динамический структурный внутриклеточный гомеостаз.

Внутриклеточная регенерация - универсальный биологический механизм, имеющий место во всех клетках организма. Для жизнедеятельности нейрона, который, как высокодифференцированная клетка, не способен митотически делиться, этот механизм имеет существенное значение - внутриклеточная регенерация является единственным способом структурного обновления нейронов и поддержания их целостности. К ней относятся синтез белков, образование внутриклеточных органелл, митохондрий, мембранных структур, рецепторов, рост нервных отростков (аксоны, дендриты, дендритные шипики) и др.

Процессы внутриклеточной регенерации требуют высокого энергетического и трофического обеспечения и полноценного метаболизма клетки. При повреждениях нейрона, возникновении энергетического и трофического дефицита, нарушениях деятельности генома страдает внутриклеточная регенерация, падает пластический потенциал клетки, распад внутриклеточных структур не уравновешивается их восстановлением - происходят глубокие нарушения динамического структурного гомеостаза нейрона; при прогрессировании этого процесса нейрон погибает.

 

20.3.9. Нарушение деятельности нейрона при изменении процессов внутриклеточной сигнализации

После восприятия рецептором сигнала (связывания рецептором нейромедиатора, гормона и др.) в нейроне возникает каскад цепных метаболических процессов, обеспечивающих необходимую активность нейрона. Существенную роль в этих процессах играют так называемые усилительные, или пусковые, ферменты и образующиеся под их влиянием вещества-посредники, вторичные мессенджеры.

Два типа из указанных процессов наиболее изучены: в одном из них (система АЦ-аза - цАМФ) роль пускового усилительного фермента играет аденилатциклаза (АЦ-аза), а роль связанного с ней вторичного мессенджера - циклический аденозинмонофосфат (цАМФ); в другом (система фосфоинозитидов) пусковым ферментом является фосфолипаза С, а в качестве вторичных мессенджеров выступают инозиттрифосфат (ИФ.1) и диацилглицерин (ДАГ). Роль универсального вторичного мессенджера играет Са2+, принимающий участие практически во всех внутриклеточных процессах. Существенным результатом деятельности указанных систем и Са2+является активация ряда протеинкиназ, которые обеспечивают фосфорилирование и повышение, таким образом, активности различных функ-циональных белков - мембранных, цитоплазматических и ядерных, ионных каналов, с чем связаны осуществление функций нейрона и его жизнедеятельность.

Совокупность указанных каскадных мембранных и внутриклеточных процессов составляет эндогенную усилительную систему нейрона, которая может обеспечить многократное усиление входного сигнала и возрастание его эффекта на выходе из нейрона. Так, каскад метаболических процессов АЦ-азного пути может усилить эффект стимула в 107- 108раз. Благодаря этому возможны выявление и реализация слабого сигнала, что имеет особое значение в условиях патологии, при нарушении синаптического проведения.

Многие изменения функций нейрона связаны с действием патогенных агентов на те или иные звенья указанных систем внутриклеточной сигнализации. Фармакологическая коррекция деятельности нейрона и эффекты лечебных средств также реализуются через соответствующие изменения этих систем. Так, холерный и коклюшный токсины действуют на процессы, связанные с активностью мембранных G-белков, активирующих или угнетающих АЦ-азу. Ксантины (теофиллин, кофеин) обусловливают накопление цАМФ, что приводит к усиленной деятельности нейрона. При действии ряда противосудорожных препаратов (например, дифенилгидантоина, карбамазепина, бензодиазепинов) и психотропных средств (например, трифтазина) угнетаются разные пути фосфорилирования белков, благодаря чему снижается активность нейронов. Ионы лития, применяемые при лечении некоторых эндогенных психозов, ослабляют деятельность системы фосфоинозитидов. С усиленным входом Са2+связана эпилептизация нейронов, блокада этого входа антагонистами Са2+подавляет эпилептическую активность.

 

20.3.10. Гиперактивность нейрона

Гиперактивность нейрона обусловлена значительным, выходящим из-под контроля нарушением баланса между возбуждением и торможением нейрона в пользу возбуждения. В функциональном отношении она заключается в продуцировании нейроном усиленного потока импульсов, который может иметь различный характер: высокочастотные потенциалы действия; отдельные разряды; разряды, сгруппированные в пачки, и пр. Особый вид гиперактивности представляет собой пароксизмальный деполяризационный сдвиг (ПДС) в мембране, на высоте которого возникает высокочастотный разряд (рис. 189). Такой вид гиперактивности рассматривается как проявление эпилептизации нейрона.

Указанный сдвиг баланса между возбуждением и торможением может быть обусловлен либо первичным усиленным возбуждением нейрона, преодолевающим тормозный контроль, либо первичной недостаточностью тормозного контроля. Первый механизм реализуется значительной деполяризацией мембраны и усиленным входом Na+и Са2+в нейрон, второй - расстройством механизмов, обеспечивающих гиперполяризацию мембраны: нарушением выхода К+из нейрона и входа Сl–в нейрон.

Существенным эндогенным регулятором активности нейрона является у-аминомасляная кислота (ГАМК). Она вызывает торможение нейрона при связывании со своим рецептором, входящим в сложный белковый дГАМК-комплекс, который состоит из нескольких субъединиц; при активации комплекса под влиянием ГАМК усиливается поступление Сl–в нейрон. При растормаживании нейрона в связи с ослаблением гиперполяризации и деполяризацией мембраны происходит усиление поступления Са2+в нейрон. Кроме того, Са2+, находясь уже в цитозоле, нарушает поступление Сl–в нейрон, ослабляя, таким образом, изнутри «ГАМКергическое» торможение. Со всеми этими путями действия Са2+связана эпилептизация нейрона, возникающая под влиянием конвульсантов, которые нарушают ГАМКергическое торможение. Многие конвульсанты (например, пенициллин, коразол и др.) оказывают сложное действие на нейрон, одновременно активируя возбуждающие и инактивируя тормозные механизмы.

Хроническая стимуляция нейрона (например, при прямом электрическом раздражении, синаптическом воздействии, под влиянием возбуждающих аминокислот и др.) даже слабой интенсивности может с течением времени привести к гиперактивации нейрона. С другой стороны, выключение афферентации нейрона также обусловливает гиперактивацию нейрона. Этот эффект объясняется повышением чувствительности нейрона при денервации и нарушением тормозных процессов.

Таким образом, патологическая гиперактивация нейронов, их эпилептизация, представляет сложный комплекс разнообразных мембранных и внутриклеточных процессов. Для подавления эпилептической активности целесообразно комплексное применение веществ, нормализующих основные патогенетические звенья процесса. Среди корригирующих воздействий первостепенное значение имеют блокада входа Са2+и восстановление тормозного контроля.

 

20.4. ГЕНЕРАТОРЫ ПАТОЛОГИЧЕСКИ УСИЛЕННОГО ВОЗБУЖДЕНИЯ (ГПУВ)

 

20.4.1. Понятие и общая характеристика

Расстройство деятельности ЦНС возникает при воздействии достаточно мощного потока импульсов, способного преодолеть механизмы регуляции и тормозного контроля других отделов ЦНС и вызвать их патологическую активность. Столь мощный поток импульсов продуцируется группой гиперактивных нейронов, образующих генератор патологически усиленного возбуждения (Г. Н. Крыжановский).

Генератор - это агрегат гиперактивных взаимодействующих нейронов, продуцирующий неконтролируемый поток импульсов. Интенсивность и характер этого потока не соответствуют поступающему сигналу и определяются только особенностями структурно-функциональной организации генератора. Вследствие того, что нейроны генератора активируют друг друга, генератор способен самоподдерживать свою активность, не нуждаясь в постоянной дополнительной стимуляции извне.

Возникая при повреждениях нервной системы, генератор становится эндогенным механизмом развития патологического процесса. Он лежит в основе разнообразных нервных расстройств, относящихся к разным сферам деятельности нервной системы. Поэтому его образование имеет характер практически универсального патогенетического механизма. Оно является типовым патологическим процессом, осуществляющимся на уровне межнейрональных отношений. Электрофизиологическим выражением деятельности генератора служат суммарные потенциалы составляющих его нейронов. В качестве примера таких потенциалов можно привести электрическую активность, регистрируемую в области генератора в гигантоклеточном ядре продолговатого мозга (рис. 190) и в эпилептическом очаге в коре головного мозга, который является одним из видов генератора.

 

20.4.2. Патогенетическое значение ГПУВ

Основное патогенетическое значение генератора заключается в том, что он гиперактивирует тот отдел ЦНС, в котором он возник или с которым он непосредственно связан, вследствие чего этот отдел приобретает значение патологической детерминанты (см. разд. 20.5), формирующей патологическую систему (см. разд. 20.6). Поскольку патологические системы лежат в основесоответствующих нервных расстройств (нейропатологических синдромов), образование генератора является инициальным звеном этих расстройств, возникающим на уровне межнейрональных отношений. Экспериментально это доказывается тем, что, создавая генератор в определенных отделах ЦНС, можно вызвать соответствующие нейропатологические синдромы (например, различные виды болевых и судорожных синдромов, паркинсонический синдром, ряд эмоционально-поведенческих расстройств и др.

 

20.4.3. Образование и деятельность ГПУВ

Генератор может образовываться при действии разнообразных веществ экзогенной или эндогенной природы, вызывающих либо нарушение механизмов тормозного контроля (что влечет за собой растормаживание и гиперактивацию нейронов), либо непосредственную гиперактивацию нейронов. В последнем случае тормозные механизмы сохранены, но они функционально неэффективны и неспособны нормализовать деятельность нейронов. Во всех случаях обязательным условием образования и деятельности генератора является недостаточность торможения составляющих его нейронов.

Примером образования генератора при первичном нарушении торможения могут быть генераторы, возникающие при действии столбнячного токсина, стрихнина, пенициллина и других конвульсантов. Примером образования генератора при первичной гиперактивации нейронов могут быть генераторы, возникающие при усиленной и продолжительной синаптической стимуляции, при действии возбуждающих аминокислот (в частности, глютамата), при неглубокой ишемии и постишемической реперфузии ЦНС, при соответствующих изменениях рецепторных, мембранных и метаболических процессов. Генератор может возникать также при деафферентации нейронов после перерезки нервов и спинного мозга, с чем связаны деафферентационные болевые синдромы.

На ранних стадиях развития генератора, когда тормозные механизмы еще сохранены, а возбудимость нейронов невысокая, генератор активируется достаточно сильными стимулами, поступающими через определенный вход в составляющую его группу нейронов. На поздних стадиях, когда возникает глубокая недостаточность тормозных механизмов и значительно повышается возбудимость нейронов, генератор может активироваться различными стимулами из разных источников, а также активироваться спонтанно благодаря деятельности значительно и устойчиво измененных нейронов.

Характер деятельности генераторов, образующихся в разных отделах ЦНС и в разных условиях, неодинаков. Он определяется особенностями структурно-функциональной организации генератора. В связи с этим разные генераторы, а также один и тот же генератор на разных стадиях своего развития, продуцируют различные по своему характеру и продолжительности потоки импульсов. С этим связаны особенности вызываемых генератором патологических реакций и протекания приступов при тех или иных патологических синдромах.

 

20.5. ПАТОЛОГИЧЕСКАЯ ДЕТЕРМИНАНТА

 

20.5.1. Понятие и общая характеристика

Образование генератора не всегда имеет своим следствием возникновение патологических реакций. При блокаде распространения генерируемого возбуждения механизмами тормозного контроля генератор оказывается функционально изолированным и не вызывает системных патологических эффектов. Патология возникает, если гиперактивируемый под влиянием генератора отдел ЦНС активно влияет на другие образования ЦНС, вовлекает их в патологическую реакцию и объединяет их в новую, патодинамическую организацию - патологическую систему (Г. Н. Крыжановский). Во многих случаях, в частности на ранних стадиях образования патологической системы и в островозникающих патологических системах, такой гиперактивный отдел ЦНС детерминирует также и характер деятельности индуцированной им патологической системы, он приобретает значение патологической детерминанты. Роль патологической детерминанты может играть любое образование ЦНС (отдел, ядро, нервный центр и пр.).

 

20.5.2. Патогенетическое значение патологической детерминанты

Патологическая детерминанта является формирующим, ключевым и управляющим звеном патологической системы. Она представляет собой эндогенный механизм дальнейшего развития патологического процесса. Возникновение детерминанты относится к разряду типовых патологических процессов, реализующихся на системном уровне. Поскольку детерминанта определяет характер активности частей системы и их взаимодействие внутри системы, она является выражением принципа внутрисистемных отношений.

Примером патологической детерминанты в коре головного мозга является мощный эпилептический очаг, под влиянием которого формируется комплекс из разрозненных, более слабых очагов эпилептической активности (ЭпА) (рис. 191). Такой очаг не только формирует эпилептический комплекс, представляющий собой патологическую (эпилептическую) систему, но и определяет характер активности других очагов и всего комплекса как единой системы. Если подавить с помощью фармакологических средств или хирургически удалить детерминантный очаг, то комплекс распадается и вместо него вновь возникают отдельные эпилептические очаги.

 

20.5.З. Возникновение и деятельность патологической детерминанты

Детерминанта может объединять структуры ЦНС в патологическую систему и определять характер активности этих структур и системы в целом при условии, если ее влияния способны преодолеть механизмы регуляции подчиняемых ей структур. Такую способность приобретает гиперактивное образование ЦНС, продуцирующее достаточно мощную функциональную посылку. В большинстве случаев гиперактивацию данного образования осуществляет возникший в нем генератор. Ослабление по каким-либо причинам механизмов регуляции тех структур, которые воспринимают влияния детерминанты, способствует реализации этих влияний. Так, в формирование эпилептической системы в виде комплекса эпилептических очагов (см. рис. 191) вовлекаются прежде всего те зоны коры головного мозга, которые были изменены под влиянием малых доз конвульсантов (зоны 2 и 3); зона 4, не подвергавшаяся воздействию конвульсантов, осталась невовлеченной в комплекс.

На ранних стадиях развития нервных расстройств патологическая детерминанта активируется специфическими модальными стимулами, т. е. раздражениями, которые адекватны для образования ЦНС, ставшего детерминантой (например, световыми раздражениями, если детерминантой являются образования в системе зрительного анализатора, болевыми - если детерминанта возникла в системе болевой чувствительности и пр.). Эта закономерность распространяется и на расстройства высшей нервной деятельности, на невротические реакции: их детерминанта облегченно активируется при действии тех раздражителей, которые обусловили ее образование (например, те же конфликтные невротизирующие ситуации и пр.). Указанные особенности определяют специфику провоцирующих воздействий, вызывающих приступы при соответствующих нервных расстройствах. На поздних стадиях детерминанта может активироваться стимулами различной модальности, в связи с чем приступы могут провоцироваться разными воздействиями. Кроме того, патологическая детерминанта может активироваться спонтанно в связи со спонтанной активацией генератора.

Отделы ЦНС, испытывающие длительное влияние патологической детерминанты, с течением времени могут сами становиться детерминантами. Вначале такая вторичная детерминанта зависима от первичной: она исчезает, если ликвидируется первичная детерминанта. В дальнейшем вторичная детерминанта может приобрести самостоятельное патогенетическое значение. Обычно вторичной патологической детерминантой становится следующее звено той же патологической системы. Но ею может быть образование, относящееся к другой физиологической системе; в таком случае из этой физиологической системы формируется новая патологическая система. Иногда вторичная детерминанта оказывается более сильной, чем первичная, и становится ведущей. Установление первичной и вторичной детерминант имеет важное значение для понимания патогенетических особенностей нерв-ных расстройств, их правильной диагностики и патогенетической терапии.

Патологическая детерминанта является наиболее резистентной частью патологической системы. При подавлении патологической системы или при ее естественной ликвидации детерминантная структура сохраняется еще тогда, когда другие образования системы уже нормализовались и вышли из ее состава («детерминанта умирает последней»). При восстановлении патологической системы под влиянием новых патогенных воздействий раньше других активируется детерминантная структура («детерминанта воскресает первой»), которая способствует восстановлению патологической системы.

 

20.6. ПАТОЛОГИЧЕСКАЯ СИСТЕМА

 

20.6.1. Понятие и общая характеристика

Патологическая система - новая патодинамическая организация, возникающая в ЦНС в условиях повреждения, деятельность которой имеет биологически отрицательное значение (Г. Н. Крыжановский). Главным биологическим признаком патологической системы является ее дизадаптивное или прямое патогенное значение для организма. Этот признак существенным образом отличает патологическую систему от физиологической системы, деятельность которой имеет адаптивное значение и направлена на достижение полезного для организма результата.

В одних случаях патологическая система возникает в результате гиперактивации и выхода из-под контроля физиологической системы, в других - путем вовлечения поврежденных и неповрежденных образований ЦНС в новую, не существовавшую ранее структурно-функциональную организацию.

Возникновение патологической системы представляет собой следующий этап эндогенизации патологического процесса и механизм его дальнейшего развития. Формирование и деятельность патологической системы относятся к разряду типовых патологических процессов, реализующихся на уровне системных отношений.

Наглядным примером деятельности патологической системы является патологический чесательный рефлекс. Он возникает при создании генератора в брахиальном отделе спинального аппарата чесательного рефлекса. В этих условиях данный аппарат становится патологической детерминантой, которая превращает физиологический чесательный рефлекс в патологический. Животное начинает расчесывать задней лапой зону проекции рефлекса на передней конечности. Эти расчесывания возникают спонтанно. С течением времени, по мере развития патологической системы, они становятся все более частыми, продолжительными и ожесточенными и могут завершаться раздиранием тканей. Животное не в состоянии прекратить эти расчесывания, несмотря на их бесполезность и вредящий эффект. Подобного рода неукротимое насильственное поведение наблюдается при многих формах патологии нервной системы у человека.

 

20.6.2. Структурно-функциональная организация и особенности деятельности патологической системы

На рис. 192 представлена принципиальная схема организации патологической системы. Ключевым системоорганизующим и управляющим звеном является патологическая детерминанта с ее механизмом гиперактивации в виде генератора (блок Г-Д). Промежуточные (блок П) и центральные эфферентные звенья (блок ЦЭ) развивают деятельность, которая соответствует особенностям активности патологической детерминанты. Если патологическая система имеет выход на периферию, то в ее структуру входит и периферический орган, который становится органом-мишенью (блок ОМ). В этом случае деятельность патологической системы проявляется в виде измененной функции органа - патологического эффекта (блок ПЭф). Если конечным звеном патологической системы являются структуры мозга, то ее эффект выражается в нарушении соответствующих функций мозга.

От всех звеньев патологической системы идут обратные отрицательные связи к тем же звеньям и к детерминанте. Однако в отличие от физиологической системы, где подобные связи регулируют деятельность системы, в патологической системе они функционально неэффективны, так как не корригируют (или плохо корригируют) патологическую детерминанту, которая вследствие недостаточности тормозных механизмов выходит из-под контроля. Тормозные механизмы относительно недостаточны и в других отделах патологической системы. Поэтому система в целом практически выходит из-под общего интегративного контроля ЦНС. Наряду с этим, благодаря постоянной активности, положительные связи между частями патологической системы упрочиваются, проведение возбуждения по этим связям облегчается. Вследствие этого с течением времени патологическая система становится все более резистентной к регулирующим влияниям со стороны антисистемы и мозга и в целом к лечебным воздействиям. Она работает по жесткопрограммному принципу, реализуя усиленные влияния патологической детерминанты.

На ранних стадиях процесса патологическая система вслед за патологической детерминантой активируется модально специфическими для нее раздражителями, на поздних стадиях она может активироваться различными, в том числе случайными, стимулами, а также спонтанно. Поэтому на поздних стадиях приступы, характерные для деятельности данной патологической системы (например, эпилептические припадки, эмоциональные аффекты, приступы боли и пр.), могут провоцироваться различными раздражениями, возникать спонтанно, становясь все более частыми, продолжительными и интенсивными.

В начальной стадии патологическая система зависима от патологической детерминанты, она активируется при возбуждении детерминанты и исчезает при ликвидации детерминанты. На поздних стадиях вследствие упрочения структуры патологической системы последняя менее зависима от первичной детерминанты и может продолжать действовать и после удаления детерминанты.

 

20.6.3. Патогенетическое значение патологической системы

Патологические системы лежат в основе разнообразных нервных расстройств, относящихся к различным сферам деятельности нервной системы, поэтому их образование имеет значение практически универсального патогенетического механизма.

Деятельность патологической системы клинически выражается в виде нейропатологического синдрома или симптомов. Каждый синдром имеет свою патологическую систему. Простые, линейные патологические системы проявляются в виде симптомов или мономорфных синдромов. Примером сравнительно простой патологической системы является патологическая система описанного выше патологического чесательного рефлекса. Многозвеньевые, разветвленные патологические системы служат патогенетической основой сложных полиморфных синдромов. Последние могут быть также выражением комплекса различных патологических систем, имеющих общую первичную патологическую детерминанту. В качестве примера таких патологических систем можно привести паркинсонизм, эмоционально-поведенческие расстройства и др.

Последовательно реализующаяся патогенетическая триада «генератор - патологическая детерминанта - патологическая система» является эндогенным механизмом возникновения различных нервных расстройств, проявляющихся в виде соответствующих нейропатологических синдромов.

Создание генераторов в определенных, патогенетически значимых для нейропатологических синдромов структур ЦНС делает эти структуры гиперактивными, вследствие чего они приобретают значение патологических детерминант. Клиническим проявлением деятельности этих патологических систем служат соответствующие нейропатологические синдромы. Это положение лежит в основе воспроизведения экспериментальных моделей различных нейропатологических синдромов: центральных болей спинального происхождения (генератор в дорзальных рогах спинного мозга); невралгии тройничного нерва (генератор в каудальном ядре тройничного нерва); таламического болевого синдрома (генератор в интраламинарном ядре таламуса); вестибулопатии - крыса вертится вокруг продольной оси своего тела (генератор в вестибулярном ядре Дейтерса); фотогенной эпилепсии (генератор в системе зрительного анализатора - в латеральном коленчатом теле); патологически удлиненного сна (генератор в сомногенной системе); сложного психоаффективного патологического состояния (генератор в эмоциогенной системе); патологическое пищедобывательное поведение типа насильственной формы поведения (генератор в латеральном гипоталамусе); паркинсонического синдрома (генератор в хвостатых ядрах).

Один из важных патогенетических механизмов функционирования патологической системы заключается в том, что она подавляет активность физиологических систем, в том числе и антисистем, и компенсаторные процессы. Этот механизм способствует развитию патологического процесса, особенно при продолжающемся действии этиологического фактора. Он приводит в конечном счете к дезорганизации деятельности ЦНС, весьма значительной на поздних стадиях процесса.

Возникновение, развитие и деятельность патологической системы представляют структурно-функциональную сторону патологического процесса на уровне межсистемных отношений. Его основой являются процессы, осуществляющиеся на нейрональном и межнейрональном уровнях. Учет специфики этих процессов, в частности их нейрохимической природы, при каждой форме патологии нервной системы имеет существенное значение для понимания патогенеза данной формы и разработки соответствующей патогенетической терапии.

 

20.6.4. Ликвидация и восстановление патологической системы

В отличие от физиологической системы, которая после достижения запрограммированного биологически полезного (адаптивного) результата ликвидируется как функциональная организация, что обеспечивает возможность образования и деятельности новых функциональных систем, патологическая система может действовать неопределенно долгое время. Это связано с сохранением патологической детерминанты и закреплением положительных связей между частями патологической системы. Ликвидация патологической системы обусловлена ослаблением влияний патологической детерминанты и активацией антисистем. Она может происходить естественным путем при мобилизации эндогенных саногенетических механизмов и при действии фармакологических лечебных средств, подавляющих активность патологической системы, нарушающих синаптические связи между ее частями и активирующих саногенетические механизмы.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 276; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.041 сек.