Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Бесконечно-малые и бесконечно-большие величины




,,,.

Лекция № 10. 11. 11. 2016

Метод Лопиталя для неопределённостей . Несмотря на то, что тема «производные» подробно будет позже, и доказательство этого метода будет дано в той теме, производные для некоторых элементарных функций известны из школы, и можно этим пользоваться при вычислении пределов.

Если , при и ,

то .

Пример. = = = .

Этот метод можно применять и в 2 или более шагов, если после 1-го дифференцирования остаётся неопределённость .

Вычислим этим же способом = = 1.

График ln(1+x) это ln(x) сдвинутый влево на 1, касательная проходит ровно под углом 45 градусов, то есть совпадает с функцияей y = x. Если рассмотреть при большом увеличении, они почти неотличимы.

Ещё пример. .

Ещё пример. .

1-й замечательный предел. .

Доказательство 1-го замечательного предела из геометрических соображений.

Рассмотрим единичную окружность, и какой-либо угол. Длина дуги AB равна - это по определению радианной меры угла. Так как ОА это радиус, а мы взяли единичную окружность, то

.

Так как ОВ это тоже радиус, то .

Но длина дуги на чертеже больше, чем отрезок BD, и меньше, чем AC.

, то есть .

Совпадают они именно при .

Кстати, графики трёх функций именно так и расположены: у них общая касательная, тангенс выше, синус ниже, чем биссектриса.

Неравенства перепишем в виде: .

Теперь разделим всё на синус. . Рассмотрим обратные величины ко всем этим, пользуясь тем, что из следует . Получится .

Применим свойство, которое доказывали когда-то ранее: если и две крайние из 3 величин стремятся к А, то и средняя имеет предел и стремится к А.

Учитывая, что , а константа справа и так равна 1, то .

Если обозначение угла сменить, обозначить x, то и получается .

Следствия из 1-го замечательного предела:

, , , .

Пример. .

Более подробно: мы могли бы заменить , и учесть, что при будет и .

Пример. Найти предел .

Решение. Надо получить в знаменателе такое же выражение, как под знаком sin.

= = = 2.

Здесь можно в процессе решения переобозначить , причём при .

 

2-й замечательный предел.

Обратите внимание, что этот предел вовсе не 1, как могло бы показаться. Ведь в степень всегда возводится не 1, а число, большее, чем 1. Оно уменьшается, но оно ни при каком n не равно 1. Здесь 2 процесса: одновременно уменьшается основание до единицы, и при этом увеличивается степень. Всё зависит от соотношения скоростей этих процессов.

Если, к примеру, есть 2 процесса: растворение краски и замораживание ёмкости с водой, то существенно отличается результат, если выполнить 1-й или 2-й процесс раньше. Если сначала заморозить воду, то уже ничего не растворится, а если сначала растворить, то будет равномерная смесь. Если замораживать одновременно с растворением, то будет другой результат, краска растворится не равномерно. Короче говоря, мы не имеем права считать, что сначала уменьшили основание в выражении и только потом стали увеличивать степень, здесь оба процесса идут одновременно, поэтому сказать, что такой предел всегда равен 1, будет ошибкой.

Число, даже очень близкое к 1, при возведении в выокую степень существенно возрастает. Так, при инфляции 10% в год, за 20 лет цена будет почти в 7 раз больше: = 6,7275. А если 15% в год, то за 20 лет в 16 раз больше: = 16,36654.

Докажем, используя некоторые ранее полученные пределы, чтобы понять, каким образом в этом пределе появляется число e.

Возьмём выражение , запишем как .По свойству логарифма, . Возведём в степень e:

, то есть .

Если ввести замену , то получим . Если здесь выбрать значения только для целых абсцисс, то получится .

Следствия из 2-го замечательного предела.

Вообще, с помощью 2 замечательного предела можно раскрывать неопределённости вида .

Пример. Вычислить предел .

Решение. Заметим, что если отдельно рассмотреть основание, видно, что оно стремится к 1 (там получается 3/3). Степень стремится к бесконечности. Таким образом, здесь есть неопределённость вида , и можно применять 2-й замечательный предел.

Выделим целую часть этой неправильно дроби. Это можно сделать так: вписать перед дробью +1, а после неё (-1). Затем привести к общему знаменателю всё, что после первой единицы, то есть второй и третий элементы.

= =

= .

Обратите внимание, что само собой автоматически получилось, что после 1 такая дробь, которая стремится к 0. Это и должно было получиться, ведь всё основание стремится к 1. Теперь нужно в степени искусственно домножить на дробь, обратную к той, что в основании следует после единицы. Но чтобы степень в примере не изменилась, надо компенсировать домножением и на саму эту дробь, а не только на обратную.

= В больших скобках получилось выражение типа , его предел равен e. Таким образом,

осталось найти = = = .

Чтобы степени было видно крупнее, можно записать через exp(A) вместо eA.

= . Итак, .

 

* Замечание. Если основание стремится не к 1, а к другому числу, то второй замечательный предел можно и не использовать. Так, если то предел равен 0, если то .

, . Неопределённость возникает только в том случае, когда основание стремится к 1.

 

 

 

Определение. Функция называется бесконечно-малой в точке , если .

Функция называется бесконечно-большой в точке , если .

Это понятие не применимо к функции «вообще», без указания точки. Не бывает просто «бесконечно-малой функции», бывает только «бесконечно-малая функция в точке». Это свойство поведения функции в конкретной точке. Так, является бесконечно-малой при .

Очевидно, что если беск-малая в точке, то является бесконечно-большой в той же точке.

 

Пример. Фкнкция является бесконечно малой в точках и 1 и бесконечно большой в точке 2.

 

Бесконечно малые называются сравнимыми, если существует хотя бы один из пределов или .

Если , причём и , то две функции называются бесконечно-малыми ОДНОГО ПОРЯДКА малости. Кстати, тогда , то есть оба предела равны конечным числам, а не . Если было бы то второй предел был бы .

Если при этом , то есть , то две бесконечно малые называются ЭКВИВАЛЕНТНЫМИЭто частный случай той ситуации, когда они одного порядка.

Пример. .

Если то называется бесконечно-малой более высокого порядка, чем .

Пример. . Функции и одного порядка в точке 0.

Пример. , а также ,

то есть более высокого порядка, чем . И хотя они обе стремятся к 0, но скорость этого процесса кардинально отличается. Если рассмотреть их графики при большом увеличении около начала координат, то парабола почти неотличима от оси 0х.

Третья степень - ещё более высокого порядка, она будет проходить ниже, чем парабола. Как мы видим, хоть и все они стремятся к 0, но эти нули как бы совершенно разной силы.

 

 




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 621; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.