Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение типовых примеров. Пусть задан интеграл , где f(x) – непрерывная функция на отрезке [a, b]




Замена переменных.

Пусть задан интеграл, где f(x) – непрерывная функция на отрезке [a, b].

Введем новую переменную в соответствии с формулой x = j(t).

Тогда если

1) j(a) = а, j(b) = b

2) j(t) и j¢(t) непрерывны на отрезке [a, b]

3) f(j(t)) определена на отрезке [a, b], то

 

Тогда

Пример.

 

Интегрирование по частям.

Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:

 

Несобственные интегралы.

Пусть функция f(x) определена и непрерывна на интервале [a, ¥). Тогда она непрерывна на любом отрезке [a, b].

Определение: Если существует конечный предел, то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ¥).

Обозначение:

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если предел не существует или бесконечен, то несобственный интеграл расходится.

Аналогичные рассуждения можно привести для несобственных интегралов вида:

 

 

Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл сходится, то тоже сходится и ³.

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл расходится, то тоже расходится.

Теорема: Если сходится, то сходится и интеграл.

В этом случае интеграл называется абсолютно сходящимся.

Интеграл от разрывной функции.

Если в точке х = с функция либо неопределена, либо разрывна, то

 

Если интеграл существует, то интеграл - сходится, если интеграл не существует, то - расходится.

Если в точке х = а функция терпит разрыв, то.

Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то

 

Таких точек внутри отрезка может быть несколько.

Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.

 

Вычисление площадей плоских фигур с помощью определенного интеграла.

 


у

 

 

+ +

 

0 a - b x

 

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

Для нахождения суммарной площади используется формула.

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

 

Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.

Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

(ед2)

Пример. Вычислить несобственный интеграл или доказать его расходимость.

a. - не существует.

Несобственный интеграл расходится.

b. - интеграл сходится




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 345; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.