Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Particles and Fields




Exercise 4. Translate the following sentences into Ukrainian.

1. Just one of these bombs could annihilate a city the size of New York. 2. I don't associate him with physics at all. 3. All attempts to control inflation have failed. 4. The hydrogen molecule binds with the oxygen molecule. 5. Briefly, I think we should accept their offer. 6. Industries in Britain tend to be clustered together. 7. The situation is complicated by the fact that I've got to work late on Friday. 8. People who travel by rail still read an immense amount. 9. He insisted on checking everything himself. 10. Nevertheless, most of the universe we know is made of quarks. 11. Quarks are smaller than atoms. 12. An unstable chemical is likely to separate into simpler substances.

TEXT 1

The number of the particles of each type in the present universe is the result of a complicated history. Most of the particle types that were abundant in the early universe have long ago disappeared. We only observe them when they are produced briefly in laboratories, and then annihilate or decay. Because of this we are uncertain of how many particle types may exist.

In the present universe, quarks and electrons have properties that allow them to form the tightly bound clusters that we call nuclei and atoms. Photons and neutrinos cannot do this, and so exist much more diffusely throughout the universe.

Nevertheless, most of the universe we know is made of quarks and electrons, and the present picture we have of the world is largely an expression of the properties of these particles. Of the two, quarks have a greater tendency to cluster together. Indeed, this tendency is so pronounced that quarks are believed to be never found in isolation, but only in combinations containing either three quarks or one quark and one antiquark. These are the combinations that make up most of the subatomic particles that are observed, such as protons and neutrons, the particles found in the nuclei of atoms.

The reasons why quarks insist on clustering in this way are not completely understood. There is a general theory, known as quantum chromodynamics (QCD) that attempts to describe how quarks behave. QCD involves the interactions of fields associated with quarks and fields associated with another type of particle called gluons (so named because they bind the quarks together). Most physicists believe that when the predictions of this theory are better understood, we will know why quarks cluster as they do.

Ever since the first microsecond after the origin of the universe, quarks have been bound together, in groups of three, into neutrons or protons. All of the other combinations of quarks or the other quark types, which also can bind together, are unstable under present conditions. That is, if they are produced, they change spontaneously into less massive particles, and eventually into some combination of the stable ones. Even neutrons are unstable when they are found in isolation– as when they arc produced in nuclear reactors– and decay into protons in a few minutes. The reason that neutrons exist at all in the present universe is that when given the chance they bind together into more complex and lasting objects. Neutrons can bind with protons into atomic nuclei, and with one another in immense numbers into neutron stars.

 




Поделиться с друзьями:


Дата добавления: 2015-01-03; Просмотров: 518; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.