Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интерполяционные формулы Ньютона




 

Рассмотрим интерполяционный полином Ньютона с разделенными разностями (4.18), взяв в качестве узлов интерполирования равноотстоящие точки x0, x1 = x0+ h, …,xi=x0+ih,…,xn = x0+nh. Заменяя разделенные разности их выражениями через конечные разности согласно (4.20)

,

получим

.

Введем переменную . Тогда формула примет вид

. (4.22)

Полученную формулу называют первым интерполяционным полиномом Ньютона или полиномом Ньютона для интерполирования вперед.

Остаточная погрешность значения выражается формулой (4.8). Если заменить , то она примет следующий вид:

.

На практике величина оценивается согласно (4.21) с помощью конечных разностей (п+1)- го порядка

или определяется абсолютной величиной первого отброшенного слагаемого.

Введем еще одну интерполяционную формулу Ньютона. Для этого запишем полином Ньютона с разделенными разностями (4.18), присоединяя узлы в следующем порядке: :

Введем переменную . и выразим разделенные разности через конечные.

. (4.23)

Эта формула называется вторым интерполяционным полиномом Ньютона, или полиномом Ньютона для интерполирования назад.

Оценка (4.8) остаточной погрешности приближенного значения представится в виде

.

Итак, получены две новые формулы интерполирования, и далее будут получен еще ряд таких формул. Однако следует заметить, что каждая из них является лишь другой формой записи интерполяционного полинома Лагранжа. Поэтому, если отвлечься от различия в обозначениях и в форме записи, то все эти формулы тождественны, когда они построены по одним и тем же узлам интерполирования. Однако в практике вычислений применяются в различных случаях разные формулы. Как уже отмечалось, во-первых, дело связано с тем, что обычно бывает удобнее вести вычисления, если при интерполировании сначала используются ближайшие к x* узлы, а затем подключаются все более удаленные. При этом первые члены интерполяционных формул дадут основной вклад в искомую величину, а остальные будут давать лишь уменьшающиеся (по модулю) добавки. В этом случае легко установить, на какой разности следует закончить вычисления.

Во-вторых, как было отмечено в разделе 4.1, максимальные значения убывают к середине отрезка, содержащего все узлы, и возрастают к концам его. Поэтому, если имеется возможность при вычислениях для различных x строить интерполяционный полином по различным узлам, то их следует выбирать так, чтобы точка x находилась вблизи середины отрезка, содержащего все узлы интерполирования. В этом смысле мы можем сравнивать по точности различные интерполяционные формулы

 




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 755; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.