Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение прямоугольного треугольника, свойства и признаки равенства прямоугольных треугольников




Назначение параграфа - дать методические рекомендации к изучению «Прямоугольного треугольника», таких тем как введение прямоугольного треугольника, некоторые свойства прямоугольных треугольников, признаки их равенства. Предлагается возможная последовательность решения задач.

На изучение данных тем отводится пять часов.

В результате изучения учащиеся должны: владеть понятием «прямоугольного треугольника»; знать названия его сторон; знать, что у него один угол прямой и два острых и что сумма острых углов равна 90º; уметь по чертежу или словесным данным сделать заключение о том, какие стороны прямоугольного треугольника являются катетами и гипотенузой (например, если дано, что в треугольнике ABC угол B прямой, то стороны BA и BC - катеты, а AC - гипотенуза); знать формулировки и доказательства некоторых свойств прямоугольного треугольника и специальных признаков равенства прямоугольных треугольников; уметь применять их в решении задач.

Наблюдения за работой учителей математики приводят к выводу о том, что формирование математических понятий в школе не вписывается в чистом виде не в одну из логических систем образования понятия.

Опишем методические требования к формированию понятия. Начальным этапом является мотивация. Сущность этого этапа заключается в подчёркивании важности изучения понятия, в побуждении школьников к целенаправленной и активной деятельности, в возбуждении интереса к изучению понятия. Мотивация может осуществляться как посредством привлечения средств нематематического содержания, так и в ходе выполнения специальных упражнений, объясняющих необходимость развития математической теории.

Определение понятия - это перечисление характерных, основных, необходимых и достаточных признаков понятия.

Вводя понятие прямоугольного треугольника, мы акцентируем внимание на то, что данная тема проходит сквозь многие темы курса геометрии. Очень часто прямоугольный треугольник используется при решении задач, используются свойства и признаки равенства и подобия прямоугольных треугольников. Понятие прямоугольного треугольника не определяется, это понятие принимается как факт. Выделяются отличительные свойства треугольника через указание его отличий в происхождении. Прямоугольный треугольник - это треугольник, у которого есть прямой угол.

Определение должно быть сокращенным, конкретным. Не должно быть отрицательным. Процесс конструирования понятия протекает как поиск необходимых условий, которые достаточны.

Следующий этап - выявление существенных свойств понятия, которые соответствуют его определение. Он реализуется в основном посредством упражнений, основное назначение которых на этом этапе заключается в выделении существенных свойств изучаемого понятия и акцентирование на них внимания учащихся.

На первом уроке надо ввести понятие прямоугольного треугольника, дать понятие сторонам треугольника. При решении многочисленных задач, связанных с прямоугольными треугольниками, от учащихся потребуется особое владение понятиями «катет» и «гипотенуза» прямоугольного треугольника. Введение названий сторон прямоугольного треугольника необходимо сопровождать устными упражнениями, направленными на их запоминание и распознавание на чертеже. С этой целью можно предложить следующие задания:

1. Отрезки AB и CD пересекаются под прямым углом в точке O. Назовите гипотенузы и катеты прямоугольных треугольников AOC и BOD.

2. В треугольнике MNK проведена высота KD. Назовите получившиеся при этом прямоугольные треугольники, их гипотенузы и катеты.

Утверждения об углах прямоугольного треугольника, являясь прямыми следствиями из теоремы о сумме углов треугольника, чрезвычайно просто доказываются. Их доказательства можно предложить провести учащимся самостоятельно.

3. Один из углов прямоугольного треугольника равен: а) 20º; б) 30º; в) 45º. Найти второй острый угол треугольника.

4. Определите острые углы прямоугольного треугольника, если один из них в 2 раза больше другого.

Далее рассмотреть свойства прямоугольного треугольника. Изучение пункта 34 о свойствах прямоугольного треугольника» можно начать с решения задачи 254 и 255. После этого рассмотреть свойство 1, которому следует уделить особое внимание (катет прямоугольного треугольника, лежащего против угла в 30º, в два раза меньше гипотенузы). Так как учащиеся будут использовать его при решении задач, а в дальнейшем - при получении значений тригонометрических функций углов 30° и 60°. Использование этого свойства можно показать на примере задачи 265. Доказательство свойств 2 и 3 следует провести учителю самому с записью условия и заключения прямого и обратного утверждений на доске в виде таблицы. Эту таблицу учащиеся должны воспроизвести в своих тетрадях.

 

  Теорема Обратная теорема
Дано Δ ABC, < A = 90º, < B = 30º Δ ABC, < A = 90, AC= BC
Доказать AC= BC< B = 30º  

 

Затем рекомендуется решить задачи 257, 259, 260.

Перед доказательством специальных признаков равенства треугольников полезно вспомнить общие признаки, но не отвлечённо, применительно к прямоугольным треугольникам. Это можно сделать, предложив, например, устно по готовому рисунку провести доказательства:

. Докажите, что если два катета одного прямоугольного треугольника соответственно равны двум катетам другого, то такие треугольники равны.

. Докажите, что два прямоугольных треугольника ABC и A1B1C1 с прямым углом C и C1 равны, если у них равны катеты BC B1C1 и прилежащие к ним острые углы: <B и <B1.

После выполнения задачи 2 можно сделать замечание о том, что если в прямоугольных треугольниках ABC и A1B1C1 <A = <A1, то и <B = <B1, так как углы B B1 дополняют до 90º равные углы A и A1. А значит, можно доказать равенство этих треугольников по катету и противолежащему острому углу.

Следует также сказать, что этот признак и ещё два признака, которые могут рассматриваться далее, являются специальными признаками прямоугольных треугольников.

Доказательство этого признака можно предложить учащимся провесит самостоятельно.

Сформулировать признак равенства прямоугольных треугольников по гипотенузе и острому углу, учитель может и его предложить учащимся доказать самостоятельно.

Закрепить доказанные признаки можно а ходе выполнения заданий.

Обоснуйте равенство треугольников на рисунке а).

 

 

. На рисунке б) <B = <D = 90º, BC║AD. Докажите, что ΔABC = ΔCDA.

Или решить задачи 261,263 из учебника.

На доказательство признака равенства треугольников по гипотенузе и катету следует обратить особое внимание. Если предыдущие признаки доказываются весьма просто, то доказательство этого признака требует дополнительных построений и непростых логических рассуждений. После того как учитель сам проведёт доказательство признака равенства прямоугольных треугольников по гипотенузе и катету, можно решить задачу 267 на применение рассмотренного признака.

Для закрепления этого признака можно предложить учащимся задание:

. Из точки D, лежащей внутри угла A, опущены перпендикуляры DB и DC на стороны угла. Докажите, что ΔADB = ΔADC, если DB = DC

При решении задач ученики могут делать дополнительный шаг, присутствующий в доказательстве первых двух признаков, если устанавливать равенство второй пары острых углов и сводить доказательство к общим признакам треугольников.

Теорема Пифагора и методика её изучения

В этом параграфе изучается одна из важнейших теорем геометрии - теорема Пифагора и обратная ей теорема. Теорема Пифагора позволят значительно расширить круг задач, решаемых в курсе геометрии. На ней в значительной мере базируется дальнейшее изложение теоретического курса.

В результате изучения данного параграфа учащиеся должны:

знать формулировки теоремы Пифагора и следствий из неё; уметь воспроизводить доказательство теоремы Пифагора, применять ее при решении задач.

Чтобы теорема заинтересовала учеников и была ими усвоена, нужна основательная, всесторонняя подготовка. Не заинтересовавшиеся не будут слушать (слушать «пассивно»), и урок потеряет смысл, не будет уроком.

Перед доказательством теоремы Пифагора желательно провести подготовительную работу по готовым чертежам и повторить основные понятия, определения, термины; свойства площадей, так как в доказательстве используется площадь прямоугольника.

При проведении доказательства теоремы Пифагора полезно подвести учеников к тому, чтобы они приняли пассивное участие в составлении формулировки теоремы; освоили формулировку, выделили условие и заключение. Учитель должен, заранее заготовив чертёж, необходимый для доказательства теоремы, наглядно показывать на чертеже этапы проведения доказательства.

Необходимо, чтобы ученики имели опыт в решении задач; освоили первые шаги (умели сделать чертёж как можно близкий к усвоению, внести в него всё, что дано в условии, ввести необходимые обозначения), записать условие и заключение, используя введённые обозначения; Владели элементарными навыками поиска решения задач.

Для закрепления теоремы можно предложить учащимся следующие устные задачи на вычисление:

а) Катеты прямоугольного треугольника 6 см и 8 см. Вычислите гипотенузу треугольника.

б) Гипотенуза прямоугольного треугольника равна 5 см, а один из катетов 3 см. Определите второй катет.

Вопросами для повторения предусматриваются доказательства следствий из теоремы Пифагора. Эти доказательства просты и в явном виде в учебном пособии отсутствуют. При разборе этих доказательств в классе можно предложить учащимся записать их в тетради.

Ещё одним подходом к изучению теоремы Пифагора, является метод проблемной ситуации на уроках геометрии.

Учебный процесс совершается более активно в тех случаях, когда он связан с решением задач пробных ситуаций, а проблемы имеют мотивационную основу, включая живой интерес к предмету изучения. Мотивы стимулируют, организуют и направляют учебную деятельность. Значительный интерес представляет мотивация для организации процесса обучения и направления мыслительной деятельности учеников.

Проблемы, которые учитель может ставить перед учениками, обычно разрешаются на протяжении одного или нескольких уроков.

Наиболее часто учителя создают проблемные ситуации при помощи эксперимента, то есть исследования частного случая.

Легко организовать проблемную ситуацию, предложив ученикам задачи, для решения которых нужны новые знания. Полезно при этом поддерживать накал активности цепью проблемных вопросов, сменяющих один другой.

Перед изучением теоремы Пифагора рассматривается практическая задача, для решения которой нужно уметь вычислить длину гипотенузы по длинам катетов.

 

 

Построение убеждает, что определенная зависимость между катетами и гипотенузой существует, что два катета определяют треугольник, в котором гипотенуза не может быть произвольной. Можно найти приблизительное решение графическим путем. Теперь возникает вопрос: «Можно ли выразить формулой зависимость между катетами и гипотенузой?». В поисках ответа рассмотрим удобный частный случай: прямоугольный треугольник с острыми углами по 45º.

Получаем для него формулу

c2 = a2 + b2 и задаёмся вопросом: «Верна ли эта формула для произвольного прямоугольного треугольника?».

Дальнейшее исследование может быть построено по такой схеме. Поскольку в предлагаемую формулу входят величины a2, b2, c2, то есть площади квадратов со сторонами a, b, c. Построим эти квадраты. Первое построение («пифагоровы штаны») идею доказательства не поясняет.

 


 

Тогда учитель предлагает связать величины a, b и c в комбинации прямоугольных треугольников и квадратов таким образом, каким показано на рисунке.

Рассмотрим данный рисунок. Понятно, что с одной стороны площадь большого квадрата равна произведению двух сторон, которые выражены как (a+b). Отсюда следует, что площадь равна (a+b)2.

 

 

С другой стороны площадь большого квадрата равна сумме площадей фигур, на которые разбит данный квадрат. В данном случае, это сумма малого квадрата со стороной c и четырёх равных треугольников со сторонами a, b и c.

Отсюда следует, что площадь малого квадрата равна разности площади большого квадрата со стороной (a+b) и учетверённой площади треугольника со сторонами a, b и c, то есть


c2 = (a + b)2 - 2 = a2 + 2ab + b2 -

2c2 = 2a2 + 4ab + 2b2 - 4ab

2c2 = 2a2 + 2b2

c2 = a2 + b2

 

Можно ли считать формулу доказанной? Если исходить из такой формулы, которая дана на чертеже, то да. Рассмотрим, всегда ли можно для любого прямоугольного треугольника провести такое построение. Строим квадрат со стороной (a + b) и строим прямоугольный треугольник с катетами a и b. Выясним, почему все такие треугольники равны. Остаётся показать, что фигура, образованная гипотенузой и полученных прямоугольных треугольников, является квадратом. Замечаем, что все стороны этой фигуры равны как гипотенузы равных треугольников. Но достаточно ли этого, чтобы фигура ABCD была квадратом? - Нет. Доказываем, что все углы этой фигуры прямые, так как они равны разности развёрнутого угла и острых углов данного прямоугольного треугольника. Следовательно, теорему Пифагора можно считать доказанной.

В качестве домашнего задания учитель может поручить ознакомиться с доказательством, данным в учебнике.

Но цепь вопросов, связанных с зависимостью сторон прямоугольного треугольника, может быть продолжена.

Спросим прежде всего: «Справедлива ли теорема Пифагора для непрямоугольных треугольников?» - Очевидно, нет, так как две стороны треугольника a и b не определяют однозначно его форму, а третья сторона меняет свою длину в зависимости от значения угла между сторонами a и b так, что a - b < c< a + b (при b < a).

Следующая проблема: «Верна ли обратная теорема, обратная теореме Пифагора?»

Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный, а именно: прямым является угол, лежащий против этой большой стороны. В самом деле, если бы это было не так и треугольник, стороны которого a, b и c связаны зависимостью

c2 = a2 + b2, оказался бы не прямоугольным, то и стороны бы его не смогли бы удовлетворять этому равенству.

Весьма полезно попросить учащихся указать ряд случаев применения теоремы Пифагора.

В поиске ответа на этот вопрос могут появиться такие задачи.

Участок земли имеет форму прямоугольного треугольника. Наибольшая сторона участка выходит к реке и заболочено, пройти по ней нельзя. Как найти длину наибольшей стороны, если другие две стороны можно измерить непосредственно?

Длина часовой стрелки часов равна 6 мм, а минутной - 8 мм, сколько времени показывают часы, если расстояние между концами стрелок равно 20 мм, а минутная стрелка стоит на отметке «12»?

Можно провести экскурс учащихся в историю, но небольшой, что бы учащимся не надоело слушать.

Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до Пифагора. Возможно, что тогда ещё не знали её доказательства, а само соотношение между гипотенузой и катетом было установлено опытным путём на основе измерений. Пифагор, по-видимому нашёл доказательство этого соотношения. Сохранилось древние предание, что в честь своего открытия Пифагор принёс в жертву богам быка, по другим свидетельствам - даже 100 быков. На протяжении последних веков были найдены различные другие доказательства этой теоремы. В настоящее время их насчитывается боле ста.





Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 2907; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.048 сек.