Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приступ пятый 7 страница




В этой главе (как в других), я использовал гипотетические мысленные эксперименты, дабы способствовать ясному пониманию. Но если они покажутся читателю слишком неправдоподобными, то позвольте мне снова обратиться к Виклеру за примером реальной цикады, которая проделывает нечто, как минимум столь же неправдоподобное как и мои изобретения. Ityraea nigrocincta, подобно I. gregorii, практикует совместную имитацию люпиноподобных соцветий, но она «обладает продвинутой особенностью, вытекающей из того, что оба её пола имеют две морфы, зелёную и жёлтую.[36]. Эти две морфы могут садиться вместе, причём зелёные формы стремятся сесть в верхней части стебля, особенно на вертикальных стеблях; жёлтые формы садятся ниже. В результате получается чрезвычайно убедительное “соцветие”, ибо настоящие цветы в соцветии часто раскрываются последовательно – снизу вверх; зелёные завязи всё ещё присутствуют на вершине, когда нижняя часть покрыта открытыми цветами» (Wickler 1968).

Эти три главы расширили концепцию фенотипической экспрессии генов лёгкими мазками. Мы начали с признания того, что даже в пределах тела есть много степеней дальнодействующего контроля гена над фенотипом. Для ядерного гена возможно проще управлять формой клетки, в которой он находится, чем управлять формой некоторой другой клетки, или всего тела, в котором эта клетка находится. Тем не менее, мы традиционно объединяем эти влияния вместе и называем их генетическим контролем фенотипа. Мой тезис состоял в том, что дальнейший концептуальный шаг за пределы данного тела является сравнительно небольшим. Однако он не банален, и поэтому я старался развивать идею постепенно, через неодушевленные изделия, к внутренним паразитам, управляющим поведением своих хозяев. От внутренних паразитов мы переместились (с помощью кукушек) к дальнодействию. В теории, генетическое дальнодействие может включать почти все взаимодействия между особями – как того же, так и другого вида. Живой мир можно рассматривать как сеть взаимодействующих полей власти репликаторов.

Мне трудно представить себе ту математику, которая в конечном счёте требуется для понимания деталей. Я довольно смутно вижу фенотипические признаки, которые в эволюционном пространстве растаскиваются в разных направлениях в ходе отбора репликаторов. Сущность моего подхода в том, что репликаторы тянущие любую данную фенотипическую особенность, будут иметь некоторое влияние как вне тела, так и внутри его. Какие‑то из них будет тащить очевидно тяжелее, чем другие, так что вектор влияния будет иметь как переменный модуль, так и направление. Возможно, что теория гонок вооружений – «эффект редкого врага», «принцип жизни – обеда», и т.д. – будет играть важную роль формировании этих величин. Явная физическая близость будет вероятно тоже играть роль: представляется вероятным, что гены при прочих равных условиях, будут проявлять большую власть над близлежащими фенотипическими признаками, чем над отдалённым. Важный особый случай этого эффекта – клетки будут вероятно находиться под более мощным влиянием генов внутри них, чем генами внутри других клеток. То же самое справедливо и для тел. Но это будут количественные эффекты, сбалансированные с другими факторами из теории гонки вооружений. Иногда, скажем – из‑за «эффекта редкого врага», гены в других телах могут проявлять большую власть над конкретными аспектам его фенотипа, чем «собственные» гены тела. Предчувствую, что почти все фенотипические признаки при рассмотрении обнаружат знаки компромисса между внутренними и внешними силами репликатора.

Идея конфликта и компромисса между многими давлениями отбора, действующими на данный фенотипический признак, конечно хорошо знакома из обычной биологии. Мы часто говорим например, о размере хвоста птицы, как адаптивном компромиссе между требованиями аэродинамики и требованиями сексуальной привлекательности, если самки предпочитают самцов с более длинными хвостами. Я не знаю, какая математика подойдёт для описания таких внутрителесных конфликтов и компромиссов, но в любом случае она должна быть обобщена на аналогичные проблемы генетического дальнодействия и расширенные фенотипы.

Но у меня нет крыльев, на которых я мог бы воспарить в математических сферах. Мне нужны устные сообщения от тех, кто изучает животных в поле. Какое изменение внесёт доктрина расширенного фенотипа в наше фактическое видение животных? Сейчас даже самые серьёзные полевые биологи подпишутся под теоремой (в основном – Гамильтона), гласящей, что животные будут вести себя так, чтобы максимизировать возможности выживания всех своих генов. Я уточнил эту теорему, придя к новой центральной теореме расширенного фенотипа: поведение животного направлено на максимизацию выживания генов «этого поведения», безотносительно к тому, находятся ли эти гены в теле данного животного, исполняющего данное поведение, или нет. Эти две теоремы были бы тождественны, если бы животные фенотипы всегда пребывали бы под чистым контролем своих собственных генотипов, и были бы неподвластны генами других организмов. Математическая теория, призванная обработать количественное взаимодействие противоречивых давлений, могла бы сделать возможно самое простое качественное заключение – поведение, которое мы рассматриваем, может быть, по крайней мере частично, адаптацией во благо выживания генов какого‑то другого животного или растения. И потому может быть решительно неадекватно для организма, исполняющего это поведение.

Однажды, когда я пытался убедить коллегу в этом, а он был верным сторонником силы дарвиновского отбора, и хорошим полевым исследователем, – он подумал, что я опровергаю концепцию адаптации. Он предупреждал меня ещё и ещё, что люди сбрасывали со счетов определённые причуды поведения животного или детали его морфологии как бесфункциональные или неадекватные, а потом обнаруживали, что это не так. Он был прав. Но я говорил не об этом. Когда я говорю, что поведенческий паттерн неадекватен, я лишь подразумеваю, что он неадекватен для данного животного, исполняющего его. Я предполагаю, что особь, выполняющая поведение – не тот субъект, для которого это поведение является адаптивным. Адаптация приносит пользу генетическим репликаторам, ответственным за неё, и лишь случайно – вовлечённым в неё индивидуальным организмам.

На этом книгу можно было бы закончить. Мы расширили фенотип настолько далеко, насколько это возможно. Предшествующие три главы составили своего рода кульминацию, и мы могли бы быть довольны ими как завершением. Но я предпочитаю завершиться на второстепенном, чтобы начать пробуждать новое любопытство. Я признавался в начале книги что являюсь адвокатом, а для любого адвоката лёгкий путь подготовки почвы для его случая состоит в нападении на альтернативу. Поэтому перед защитой доктрины расширенного фенотипа активного репликатора зародышевой линии, я старался подорвать доверие читателя к индивидуальному организму как к единице адаптивной выгоды. Но теперь, когда мы уже обсудили сам расширенный фенотип, пришло время повторно открыть вопрос о существовании организма и его очевидной важности в иерархии жизни, и посмотреть, видим ли мы его насколько‑то более ясно в свете расширенного фенотипа. Учитывая, что жизнь не обязана быть пакетирована в дискретные организмы, и допуская, что организмы – не всегда полностью дискретны, зададим вопрос: почему, тем не менее – активные репликаторы зародышевой линии так явно выбирают организменный способ существования?

 

Глава 14. Переоткрытие организма

 

Посвятив большую часть этой книги развенчанию важности индивидуального организма, и построению альтернативного образа – суматошной толпы эгоистичных репликаторов, борющихся за своё выживание за счет своих аллелей, беспрепятственно простирающихся сквозь стены индивидуального тела, как если бы они были прозрачны, взаимодействующих с миром и друг с другом без оглядки на границы организма, мы теперь призадумались. В самом деле – есть нечто весьма впечатляющее в индивидуальных организмах. Если бы мы надели фантастические очки, в которых тела были бы прозрачны, а была бы видна только ДНК, то увиденное нами в мире распределение ДНК было бы радикально неравномерным. Ядра клеток пылали бы как звёзды, и по‑прежнему невидимые многоклеточные тела обрисовывались бы как плотно упакованные галактики с пустым пространством между ними. Миллионы миллиардов пылающих точечек двигались бы в унисон друг с другом, но асинхронно со всеми другими скоплениями таких галактик.

Организм – физически обособленная машина, обычно отгороженная стеной от других таких же машин. Он имеет внутреннюю организацию, часто потрясающей сложности, и демонстрирующую высокую степень того качества, которое Джулиан Хаксли (1912) назвал «индивидуальностью» – буквально неделимостью – достаточно разнородным по форме качеством, заключающимся в потере функциональности при сокращении наполовину. Генетически говоря, индивидуальный организм обычно также ясно определимая единица – клетки которой обладают генами, идентичными по отношению друг к другу, но отличными от генов в клетках других организмов. Для иммунолога индивидуальный организм обладает особым видом «уникальности» (Medawar 1957), которое означает готовность принятия прививки других частей того же тела, но не других тел. Для этолога – и это действительно аспект неделимости в смысле Хаксли – организм – единица поведенческого действия в намного более сильном смысле, чем скажем – два организма, особи в сообщества, или орган внутри организма. Организм имеет одну координирующую центральную нервную[37]систему. Он принимает «решения» (Докинз & Докинз 1973) как единица.[38]Все члены организма гармонично сговариваются, чтобы вместе и одновременно достигать одного результата. В тех случаях, когда два организма (или более) стараются скоординировать свои усилия, – скажем, когда львиный прайд согласованно подкрадывается к добыче, то великолепие координации между индивидуумами выглядит просто бледно в сравнении с замысловатым гармоническим сочетанием, высокой пространственной и временной точностью работы сотен мускулов в каждой особи. Даже морская звезда, лучи которой наслаждаются определённой автономией, позволяющей разрезать животное на две части, вести себя как единую сущность, и себя так, как будто имеет единую цель, даже если околоротовое нервное кольцо хирургически разрезать.

Я благодарен доктору Дж. П. Хелману, не скрывшему от меня саркастическую реакцию коллег на статью, которая была краткой проверочной версией этой книги (Докинз 1978): «Ричард Докинз переоткрыл организм». Ирония мне понятна, но там всё не так просто. Мы не возражаем, что есть что‑то особенное в индивидуальном организме как в уровне иерархии жизни, но это не есть нечто очевидное, что можно принять без вопросов. Я надеюсь, что эта книга наглядно показала наличие второй стороны куба Неккера. Но куб Неккер имеет привычку перещёлкиваться назад к его первоначальной ориентации, и затем чередовать ориентации. Да, есть что‑то особенное в индивидуальном организме как единице жизни, и мы должны увидеть это яснее, рассмотрев другую сторону куба Неккера, и приучив свои глаза видеть сквозь стены тел мир репликаторов и их расширенные фенотипы.

Так что же есть особенного в индивидуальном организме? Учитывая, что жизнь следует рассматривать как состоящую из репликаторов с их расширенными фенотипическими инструментами выживания, почему на практике репликаторы захотели группировать себя – сотнями тысяч! в клетках, и почему они повлияли на эти клетки так, чтобы те клонировали себя миллионами и миллиардами в организмах?

Один ответ предложен логикой сложных систем. Саймон (1962) написал стимулирующее эссе об «архитектуре сложности», которое предлагает (используя ставшую известной притчу о двух часовщиках – Темпусе и Хоре), общую функциональную причину того, почему сложная организация любого вида, биологическая или искусственная, стремится организовываться во вложенные иерархии повторяющихся субъединиц. Я развил его аргументацию в этологическом контексте, делая вывод, что эволюция статистически «невероятных ансамблей проходит быстрее, если существует последовательность промежуточных устойчивых субансамблей. Так как аргументация применима на уровне каждого субансамбля, то значит, что существующие в мире высокосложные системы вероятно должны иметь иерархическую архитектуру». (Докинз 1976b). В нашем контексте иерархия состоит из генов в клетках, и клеток в организмах. Маргулис (1981) убедительно указывает на красивый вариант старой идеи, говоря, что иерархия включает промежуточный уровень – сами эукариотические «клетки» в некотором смысле – многоклеточные группы, симбиотические союзы объектов, таких как митохондрии, пластиды и реснички, которые произошли от, и являются гомологами прокариотических клеток. Я не буду здесь развивать этот вопрос. Идея Саймона очень обобщённая, нам нужен более определённый ответ на вопрос о том, почему репликаторы захотели организовывать свои фенотипы в функциональные единицы, особенно на двух уровнях – клетки и многоклеточного организма.

Чтобы задавать вопросы о том, почему мир является таким, таков он есть, мы должны представить себе, каким он мог бы быть. Нужно изобрести возможные миры, в которых жизнь могла бы быть организована по‑другому, и спросить, что бы в них могло происходить. Тогда какие поучительные альтернативы построения жизни мы можем вообразить? Прежде всего – чтобы понять почему реплицирующиеся молекулы собраны в клетках, мы вообразим мир, в котором реплицирующиеся молекулы плавают свободно в море. Существуют различные вариации репликаторов, они конкурируют друг с другом за место и химические ресурсы, необходимые для построения своих копий, но они не сгруппированы вместе в хромосомах или ядрах. Каждый отдельный репликатор проявляет фенотипическую власть, производя копии самого себя, и отбор одобряет тех из них, которые обладают наиболее эффективной фенотипической силой. Легко поверить, что эта форма жизни была бы эволюционно неустойчива. Всё было бы захвачено мутантными репликаторами, которые «объединяются в бригады». Некоторые репликаторы имели бы химические эффекты, дополняющие таковые других репликаторов – дополняющие в том смысле, что когда два их химических эффекта объединены, репликация обоих облегчается (см. модель‑2 в предыдущей главе). Я уже приводил пример генов, кодирующих ферменты, катализирующих последовательные стадии биохимической реакции. Тот же принцип может применяться к большим группам взаимодополнительных реплицирующихся молекул. Действительно, реальная биохимия предполагает, что минимальная единица репликации, может быть кроме как у полного паразита, погружённого в питательную среду, составляет приблизительно пятьдесят цистронов (Margulis 1981). Здесь нет никакого различия в том, возникают ли новые гены дублированием старых и остаются рядом, или сходятся вместе ранее независимые гены. Мы можем далее обсудить эволюционную стабильность состояния «пребывания в бригаде».

«Комплектование» генов в клетки тогда понять легко, но почему клетки «собираются» вместе в многоклеточные клоны? В этом случае нам не требуется изобретать мысленных экспериментов, потому что и одноклеточные, и бесклеточные организмы изобилуют на нашем мире. Они однако все очень малы, и может быть было бы полезно вообразить возможный мир, в котором существуют большие и сложные одноклеточные или одноядерные организмы. Может ли существовать такая форма жизни, в которой единственный набор генов, возведённых на престол в единственном центральном ядре, управлял бы биохимией макроскопического тела со сложными органами; ну может не единственная гигантская «клетка», а многоклеточное тело, в котором все клетки кроме одной, были бы лишены их собственных частных копий генома? Я думаю, что такая форма жизни могла бы существовать лишь в том случае, если бы её эмбриогенез следовал бы принципам, очень отличным от тех, с которыми мы знакомы. Во всех известных нам случаях эмбриогенеза, в любом типе дифференцирующейся ткани, в любой момент «включена» незначительная часть генов (Gurdon 1974). Это был бы по общему признанию слабый аргумент на этом поприще, но если бы существовал только один набор генов во всём теле, было бы сложно понять, как соответствующие продукты гена могли быть передаться в различные части дифференцирующегося тела с должной скоростью.

Но зачем нужен полный набор генов в каждой клетке развивающегося тела? Легко представить себе такую форму жизни, в которой в ходе дифференцирования части генома отделяются так, чтобы данный тип ткани (скажем – ткани печени или почек), имел бы только те гены, которые ей требуются. И только клетки зародышевой линии выглядят действительно нуждающимися в хранении полного генома. Причиной этого может быть просто отсутствие лёгкого способа физически отделять части генома. В конце концов – гены, необходимые в какой‑то конкретной дифференцированной зоне развивающегося тела, вовсе не сосредоточены на одной хромосоме. Предполагаю, мы теперь можем задать вопрос, почему это именно так. Учитывая фактическое положение дел, можно полагать полное разделение всего генома при каждом делении клетки просто самым лёгким и экономичным способом ведения таких дел. Однако, в свете моей притчи (глава 9) о марсианине в розовых очках, и потребности в цинизме, читатель может захотеть поразмышлять далее. Может быть так, что дублирование полного (а не частичного) генома в митозе является адаптацией некоторых генов, направленной на сохранение возможности обнаруживать и пресекать деятельность потенциальных мошенников среди их коллег? Лично я сомневаюсь в этом, но не потому что идея в корне притянута за уши, а потому что с трудом представляю, как ген, скажем – в печени может мошеннически извлекать выгоду, управляя печенью так, чтобы это наносило ущерб генам в почке или селезёнке. Из логики главы про паразитов следует, что интересы «генов печени» и «генов почек» накладываются, потому что они разделяют одну и ту же зародышевую линию, и один и тот же гаметный путь выхода из данного тела.

Я не привёл строгого определения организма. Вопрос этот очень спорен, ибо организм – концепция столь сомнительной полезности, что его трудно определить удовлетворительно. С иммунологической или генетической точек зрения пара монозиготных близнецов должна бы считаться одним организмом, которые с очевидностью им не являются с точки зрения физиолога, этолога, или критерия неделимости Хаксли. Что является «особью» у колониальных сифонофор или мхов? У ботаников есть серьёзные основания менее доверять словосочетанию «индивидуальный организм», чем у зоологов: «Особи плодовой мушки, мучного жука, кроликов, плоских червей или слонов – это популяции на клеточном, но не на любом более высоком уровне. Голодание не изменяет количество ног, сердец или печеней животного, но эффект стресса на растения состоит в изменении темпа формирования новых листьев, и темпа отмирания старых: растение может реагировать на стресс, изменяя количество его частей» (Harper 1977, PP. 20–21). Для Херпера, как популяционного биолога растений, листья могут быть более существенным «индивидуумом», чем «растение», так как растение – широко распределённая в пространстве, смутная сущность, репродукцию которого можно с трудом отличить от того, что зоолог счастливо назвал бы «ростом». Херпер чувствует себя обязанным ввести два новых термина для различных видов «индивидуумов» в ботанике. «“Рамета” – единица клонального роста – модуль, который часто может вести независимое существование, будучи отделённым от родительского растения». Иногда, как у земляники, рамета – единица, которую мы обычно называем «растением». В других случаях – таких, как белый клевер, рамета может быть отдельным листом. Напротив, «генета», является единицей, которая происходит от одной одноклеточной зиготы – «индивидуум» в смысле зоолога, изучающего животные с половым размножением.

Джанзен (1977) столкнулся с тем же затруднением, и предложил расценивать клон одуванчиков как один «эволюционный индивидуум» (генет, по Херперу), эквивалентный единому дереву, хотя он не поднимается высоко в воздух, более сосредотачиваясь у поверхности, и разделён на физически отдельные «растения» (раметы по Херперу). Согласно этому представлению, на всей территории северной Америки существуют только четыре индивидуальных одуванчика, конкурирующие друг с другом за эту территорию. Джанзен рассматривает клон тлей аналогично. Его статья вообще не имеет никаких литературных ссылок, но это представление не ново. Оно восходит к, по крайней мере 1854 году, когда T. Х. Хаксли «трактовал каждый цикл жизни – от одного акта полового размножения до другого – как индивидуума, являющегося единой единицей. Он даже трактовал линию бесполого размножения тлей как индивидуум» (Ghiselin 1981). В таком стиле размышлений есть достоинства, но я покажу, что оно упускает кое‑что важное.

Вот один способ переформулировать соображения Хаксли‑Джанзена. Зародышевая линия типичного организма, скажем – человека, проходит через возможно несколько дюжин последовательных митотических делений между каждым мейозом. Если использовать описанный в главе 5 «ретроспективный» способ рассмотрения «прошлого опыта гена», то любой взятый ген в ныне живущем человеке имеет такую историю клеточных делений: мейоз, митоз, митоз....митоз, мейоз. В каждом следующем теле, в параллель с митотическим делением зародышевой линии, другие митотические деления снабдили зародышевую линию большим клоном клеток‑«помощников», сгруппированных вместе в тело, где находится зародышевая линия. В каждом поколении зародышевая линия втискивается в одноклеточное «бутылочное горлышко» (гамета с последующей зиготой), которое затем раздувается в многоклеточное, которое затем снова втискивается в новое бутылочное горлышко, и т.д. (Bonner 1974).

Многоклеточное тело – машина для производства одноклеточных пропагул. Большие тела, такие как у слонов, наглядно воспринимаются как тяжёлые машины и даже заводы, в создание которых временно вбухано много ресурсов – с целью позже улучшить производство пропагул (Southwood 1976). В некотором смысле зародышевая линия заинтересована в уменьшении инвестиций капитала в тяжёлые машины, в уменьшении количества делений клеток в фазе роста с тем, чтобы сократить интервал между актами воспроизводства. Однако этот интервал имеет оптимальную длительность, которая различна для различных форм жизни. Гены, побуждавшие слонов размножаться, когда те слишком молоды и малы, размножали себя менее эффективно чем аллели, стремящиеся выдержать оптимальный интервал размножения. Оптимальный интервал для генов, оказавшихся в генофонде слона, намного длиннее, чем таковой для генов в генофонде мыши. Слону требуется инвестировать больше капитала, прежде чем эти инвестиции начнут «окупаться». Простейшие в значительной степени вообще обходится без фазы роста в жизненном цикле, и все их деления клетки «репродуктивные».

Отсюда следует, что данный способ рассмотрения организмов полагает, что их конечным продуктом, «целью» фазы роста жизненного цикла, является воспроизводство. Все митотические деления клетки, создающие слона, направлены на достижение финала – размножения жизнеспособных гамет, которые преуспеют в увековечивании зародышевой линии. Теперь, держа это в уме, посмотрим на тлей. Летом бесполые самки проходят ряд поколений бесполого воспроизводства, достигающий кульминации в единственном половом поколении, с которого цикл начинается снова. Ясно, что по аналогии со слоном, легко согласиться с Джанзеном в рассмотрении летних бесполых поколений как всецело направленных на финал – половое воспроизводство осенью. Бесполое воспроизводство, согласно этому представлению – на деле не воспроизводство вообще. Это – рост, такой же, как рост тела отдельного слона. Для Джанзена весь клон самок тлей – единственный эволюционный индивидуум, потому что он продукт единственного полового слияния. Да, это необычный индивидуум, который оказался раздроблен на множество физически отдельных единиц, ну и что? Каждая из этих физических единиц несёт собственный фрагмент зародышевой линии, но то же самое делает левый и правый яичник слонихи. Фрагменты зародышевой линии у тли отделены слоем воздуха, а у слонихи два яичника отделены кишками, но, опять же – ну и что?

Как ни убедительна эта линия доказательств, но я уже упомянул, по‑моему она пропускает важный момент. Правильно расценить большинство митотических делений клетки как «рост», «нацеленный» на финальную цель – воспроизводство, и правильно расценить индивидуальный организм как продукт одного репродуктивного акта, но Джанзен не прав, приравнивая различие между воспроизводством и ростом к различию между половым и бесполым размножением. Да, что и говорить, здесь имеется важное различие, но это не различие между половым и бесполым, точно также это не различие между мейозом и митозом.

Различие, которое я хочу подчеркнуть – это различие между делениями клеток зародышевой линии (воспроизводство), и делением соматических клеток, или клеток «тупиковой линии» (рост). Деление клеток зародышевой линии – это такое деление, когда дублируемые гены имеют шанс стать предками неопределенно длинной линии потомков, а гены – фактически истинные репликаторы зародышевой линии в смысле главы 5. Деление клеток зародышевой линии может быть митотическим или мейотическим. Если мы просто наблюдаем деление клетки под микроскопом, то мы не можем узнать, делятся ли это клетки зародышевой линии или нет. Деления как клеток зародышевой линии, так и соматических клеток могут быть внешне неотличимым митозом.

Если мы рассмотрим ген в любой клетке в живущем организме, и проследим его историю в эволюционное прошлое, то немного самых недавних клеточных делений его «опыта» могут быть соматическими, но как только мы достигаем деления клетки зародышевой линии на нашем марше назад, то все предыдущие деления в истории гена будут делениями зародышевой линии. Деления клетки зародышевой линии можно трактовать как эволюционный переход вперёд, в то время как соматические деления клетки являются переходом вбок. Соматические деления клеток используются для изготовления смертных тканей, органов и инструментов, «цель» которых – поддержка делений клеток зародышевой линии. Мир населён генами выжившими в зародышевых линиях с помощью, полученной от их точных дубликатов в соматических клетках. Рост происходит вследствие размножения соматических клеток тупиковой линии, в то время как воспроизводство – средство размножения клеток зародышевой линии.

Харпер (1977) определяет различие между воспроизводством и ростом растений, которые будет в норме означать то же самое, что и моё различие между делениями клеток зародышевой линии и соматическими: «различие, определённое здесь между “воспроизводством” и “ростом” состоит в том, что воспроизводство – это формирование нового индивидуума из единственной клетки: это – обычно (хотя и не всегда – например при апомиксисе) зигота. В ходе этого процесса новый индивидуум “воспроизводится” по информации, закодированной в клетке. Рост же, напротив – следует из развития организованных меристем» (Харпер, 1977 с. 27). В чём сущность здесь – действительно ли есть важное биологическое различие между ростом и воспроизводством, которое – не есть то же самое, как различие между митозом и мейозом + наличием пола? Действительно ли есть критическое различие между «репродуцированием», которое делают две тли с одной стороны, и «ростом», когда одна тля просто дублируется по образу другой? Джанзен возможно сказал бы, что нет. Харпер возможно сказал бы, что да. Я согласен с Харпером, но я не смог бы доказать мою позицию, пока не прочитал вдохновляющую книгу «Развитие» Дж. T. Боннера (1974). Доказательство лучше всего сделать с помощью мысленного эксперимента.

Представьте себе примитивное растение, состоящее из плоского, листоподобного тела, плавающего на поверхности моря. Питательные вещества оно поглощает нижней частью тела, а солнечный свет – верхней. Вместо «репродуцирования» (то есть распространения одноклеточных пропагул, могущих прорастать в другом месте), оно просто растёт по краям, расползаясь во всё больший и больший круглый зелёный ковёр, подобный листу чудовищной водяной лилии – несколько миль в поперечнике, продолжающий расти. Возможно, что старые части тела в конечном счёте отмирают, и оно будет представлять собой скорее расширяющееся кольцо, а не полный круг, подобный настоящему листу лилии. Также возможно, что время от времени куски тела откалываются наподобие плавучих льдин, откалывающихся от пакового льда, и независимо дрейфующих в другие частям океана. Даже если мы допускаем такой способ «размножения», то я покажу, что это не есть воспроизводство в интересующем нас смысле слова.

Теперь рассмотрим подобный вид растения, который отличается от вышеописанного в одном принципиальном отношении. Оно прекращает расти, когда достигает диаметра в 1 фут, и переходит к воспроизводству. Оно продуцирует одноклеточные пропагулы, будь то половым или бесполым способом, и выбрасывает их в воздух, где их подхватывает ветер, и может унести очень далеко. Когда одна из этих пропагул попадает на водную поверхность, она становится новым телом, которое растёт, пока не достигнет 1 фут в диаметре, и затем снова переходит к воспроизводству. Я назову два вида растений соответственно G (растущее) и R (воспроизводящееся).

Следуя логике статьи Джанзена, мы должны полагать различие между этими двумя видами критическим лишь в случае, если «воспроизводство» вида R половое. Если оно бесполое, то выброс в воздух пропагул, являющихся продуктами митоза, генетически идентичными клеткам родительского тела, не может быть для Джанзена важным отличием между двумя видами. Отдельные «индивидуумы» вида R генетически отличны не более, чем могут быть отличны различные зоны тела у вида G. У любого вида мутация может инициировать появление новых клонов клеток. Нет никаких особых причин полагать, что у R мутации с большей вероятностью будут происходить ходе формирования пропагулы, чем в ходе роста тела. R – это просто более фрагментированная версия G, как одуванчики – сходным образом более фрагментированное дерево. Однако цель этого моего мысленного эксперимента состояла в том, чтобы раскрыть важное различие между этими двумя гипотетическими видами, раскрывающее различие между ростом и воспроизводством, даже когда воспроизводство бесполое.




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 291; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.