Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приступ пятый 8 страница




G только растёт, а R чередует рост и воспроизводство. Почему это отличие важно? Прямолинейная генетика не может дать ответ на этот вопрос, ибо мы видели, мутации с равной вероятностью могут инициировать генетические изменения как в ходе митоза роста, так и в ходе митоза воспроизводства. Я полагаю, что важное различие между этими двумя видами в том, что линия R способна на такие способы развития сложной адаптации, на какие G не способна. И вот почему.

Рассмотрим снова историю гена; конкретно – гена, находящегося в клетке R. Его история состоит из неоднократных переходов с одного «носителя» на другой, подобный. Каждое из серии его тел началось с одноклеточной пропагулы, следующего затем фиксированного цикла роста, затем перехода гена в новую одноклеточную пропагулу, и следовательно – в новое многоклеточное тело. История этого гена была циклична, и в этом суть. Каждое из тел этой длинной серии, развивающихся заново с одноклеточных родоначальников, имеет возможность далее развиваться слегка отлично от своих предшественников. Эволюция сложной структуры тела с органами, скажем – сложного аппарата ловли насекомых, типа Венериной мухоловки, возможна лишь в случае, если развитие идёт в ходе циклически повторяющегося процесса. Я вернусь к этой мысли чуть ниже.

Теперь рассмотрим G. Ген, находящийся в молодой клетке растущего края огромного тела имеет другую историю; она – не циклическая, а если и циклическая, то только на клеточном уровне. Предком нашей клетки была другая клетка, и карьера этих двух клеток была очень похожа. Напротив, каждая клетка растения R имеет определенное место в процессе роста. Или она находится вблизи центра однофутового тела, или с краю, или в некотором определённом месте между ними. Поэтому она может дифференцироваться, дабы выполнять её особую роль в данном месте – в органе растения. Клетка G не приобретает в ходе развития такой определённой идентичности. Все клетки сначала появляются на растущем лимбе, позже оказываются перекрытыми другим, более молодыми клетками. Имеется цикличность только на клеточном уровне, что означает, что в эволюционные изменения у G могут происходить только на клеточном уровне. Клетки могли бы улучшаться в сравнении с их предшественниками по линии клеточного развития, скажем – развивая более сложную внутреннюю структуру органелл. Но эволюция органов, и адаптация на многоклеточном уровне не могут иметь место, потому что повторяющегося, циклического развития групп клеток не происходит. Конечно верно то, клетки G и их предки находятся в физическом контакте с другими клетками, и в этом смысле формируют многоклеточную «структуру». Но степень их «заинтересованности» в объединении в сложные многоклеточные органы такова, что они могли бы точно также свободно плавать в море в виде одноклеточных простейших.

Чтобы собрать сложный многоклеточный орган, нужна сложная последовательность развития. Сложная последовательность развития должна базироваться на более ранней, слегка менее сложной последовательности. Должна иметь место эволюционная прогрессия последовательностей развития, где каждый член этой серии был бы слегка усовершенствованной версией своего предшественника. G не обладает повторяющейся последовательностью развития, кроме высокочастотного цикла развития на уровне отдельной клетки. Поэтому он не может развивать многоклеточное дифференцирование, и повышать сложность на уровне органа. В той мере, в какой рост такого многоклеточного тела вообще можно считать развитием, такое развитие нециклически продолжается на протяжении геологического времени: у вида не имеется никакого различия между масштабом времени роста, и потенциальным масштабом времени эволюции. Единственный высокочастотный цикл развития, доступный ему – цикл клетки. Напротив, R имеет многоклеточный цикл развития, который быстр в сравнении с эволюционным временем. Поэтому – по мере смены эпох, поздние циклы развития могут отличаться от более ранних, и может развиваться многоклеточная сложность. Мы, таким образом, подходим к определению организма как единицы, жизнь которой инициирована в ходе нового акта воспроизводства через одноклеточное «бутылочное горлышко».

Важность различия между ростом и воспроизводством состоит в том, что каждый акт воспроизводства инициирует новый цикл развития. Рост просто раздувает существующее тело. Когда одна тля партеногенетически порождает новую тлю, то если она – мутант, то она может радикально отличаться от её предшественницы. Допустим, тля вырастает вдвое больше её первоначального размера, и все её органы и сложные структуры просто раздуваются. Да, можно сказать, что соматические мутации могут происходить на линии развития клеток растущей гигантской тли. Это верно, но мутация на линии соматических клеток, скажем, в сердце, не может радикально реорганизовать структуру сердца. Возьмём к примеру, позвоночных. Если данное сердце двухкамерное, с одним клапаном, питающим один желудочек, то крайне маловероятно, что новые мутации в митотических клетках растущего сердца смогут произвести радикальное реструктурирование сердца, чтобы оно стало четырёхкамерным с отдельным кругом лёгочного кровообращения. Чтобы породить новую сложность, требуется новое начало развития. Новый эмбрион должен начать его на пустом месте, вообще без сердца. Тогда мутация сможет воздействовать на чувствительные ключевые точки в раннем развитии, порождая новую фундаментальную архитектуру сердца. Повторяющиеся циклы развития позволяют возвращаться «назад, к чистому листу» (см. ниже) в каждом поколении.

Мы начали эту главу с вопроса о том, почему репликаторы «сбригадированы» в большие мультиклеточные клоны, называемые организмами, и первоначально дали малоудовлетворительный ответ.[39]Сейчас ответ начинает нас удовлетворять больше. Организм – это физическая единица, ассоциированная с одним единственным циклом жизни. Репликаторы объединившись в многоклеточные организмы, обеспечивают себе регулярно повторяющуюся историю, и сложные адаптации, призванные помочь им в сохранении себя – путём эволюционного прогресса.

Цикл жизни некоторых животных состоит из более чем одного отличающегося тела. Бабочка сильно отличается от предшествовавшей ей гусеницы. Трудно представить себе бабочку вырастающую из гусеницы посредством медленных изменений органов – чтобы орган гусеницы превратился бы в соответствующий орган бабочки. На практике – вместо этого сложная структура органов гусеницы в значительной степени разрушается, а ткани гусеницы используются как сырьё и топливо для развития всего нового тела. Новое тело бабочки начинается не совсем с единственной клетки, но принцип тот же самый. Оно развивает радикально новую телесную структуру из простых, малодифференцированных имагональных дисков. Это частичное возвращение к чистому листу.

Вернёмся к самому различию между ростом и воспроизводством. Джанзен фактически не был неправ. Различия могут быть незначительными с точки зрения некоторых целей, и в то же время оставаться важными для других. При обсуждении некоторых экологических или экономических вопросов не может быть важных отличий между ростом и бесполым воспроизводством. Дружная семья сестёр‑тлей действительно может быть аналогична одному медведю. Но для других целей, при обсуждении эволюционного происхождения сложной организации, различие критически важно. Определённые экологические вопросы может осветить сравнение поля одуванчиков с единым деревом. Но для других целей важно понять различия, и видеть аналогичным дереву отдельный одуванчик.

Но мнение Джанзена – это в любом случае мнение меньшинства. Обыкновенный биолог мог бы полагать извращением взгляд Джанзена на бесполое воспроизводство тлей как на рост; в равной степени он бы полагал моим и Харпера извращением мнение, что следует расценивать вегетативное распространение многоклеточными побегами как рост, но не воспроизводство. Наше решение основано на том, что побег – многоклеточная меристема, а не одноклеточная пропагула, но почему нужно расценивать этот факт как принципиальный? Ответ можно снова увидеть в мысленном эксперименте, использующем два гипотетических вида растений, в данном случае земляникоподобные растения, обозначенные как М и S (Докинз в печати).

Оба гипотетических земляникоподобных вида размножаются вегетативно, побегами. У обоих есть популяции, в которых отдельные и распознаваемые «растения», выглядят связанными сетью побегов. У обоих видов, каждое «растение» (то есть рамета) может породить более чем одно дочернее растение, так что мы бы имели возможность видеть экспоненциальный рост «популяции» (или рост «тела» – в зависимости от вашей точки зрения). Хотя у них нет пола, у них возможна эволюция, так как в митотических делениях клеток будут иногда происходить мутации (Whitham & Slobodchikoff в прессе). Теперь – критическое различие между двумя видами. У вида М (многоклеточный, или меристемный), побег – обширная многоклеточная меристема. Это означает, что две клетки любого «растения» могут быть митотическими потомками двух различных клеток родительского растения. Поэтому, в терминах митотического происхождения, клетка может быть более близким родственником клетки на другом «растении», чем другой клетке на её собственном растении. Если мутация внесёт генетическую разнородность в клеточную популяцию, то получится, что индивидуальные растения будут генетическими мозаиками, в которых некоторые клетки будут иметь более близких генетических родственников на других растениях, чем на их собственном. Мы увидим последствия этого для эволюции чуть ниже. А пока посмотрим на другой гипотетический вид.

Вид S в точности подобен М, за исключением того, что каждый побег сходится в единственной верхушечной клетке. Эта клетка выступает как базальный митотический предок всех клеток нового дочернего растения. Это означает, что все клетки данного растения – более близкие родственники друг другу, чем любым клеткам на других растениях. Если мутация внесёт генетическую разнородность в популяцию клеток, то будет относительно немного мозаичных растений. Скорее каждое растение будет склонно к генетическому единообразию, и может генетически отличаться от некоторых других растений, будучи генетически идентичным всем остальным. Это будет истинная популяция растений, каждое их которых будет иметь генотип, типичный для генотипа всех его клеток. Поэтому возможно представить себе отбор – в смысле, который я назвал «отбором носителя», действующий на уровне всего растения. Некоторые растения, обладая превосходящими генотипами, могут быть лучше других.

У вида М, особенно если побеги – очень массивные меристемы, генетик возможно вообще не сможет распознать популяцию растений. Он будет видеть популяцию клеток, каждую с её собственным генотипом. Некоторые клетки будут генетически идентичны, у других будут различные генотипы. Какой‑то естественный отбор мог бы продолжаться среди клеток, но трудно представить себе отбор среди «растений», потому что «растение» – есть не единица, которую можно идентифицировать как обладателя собственного специфического генотипа. Скорее – вся масса расползшейся растительности должна быть расценена как популяция клеток с любыми генотипами, неряшливо разбросанными по различным «растениям». Та единица, которую я заключил в тюрьму – «носитель гена», и которую Джанзен назвал «эволюционным индивидуумом», в таком случае будет не больше клетки. Именно клетки будут генетическими конкурентами. Эволюция может принимать форму усовершенствований клеточной структуры и физиологии, но трудно представить, как она могла бы принимать форму усовершенствований индивидуальных растений или их органов.

Можно было бы представить, что усовершенствования структуры органа могли бы развиваться, если бы конкретные субпопуляции клеток в фиксированных зонах растения регулярно оказывались бы клоном, происходящим от единственного митотического предка. Например побег, порождающих новое «растение» мог бы быть массивной меристемой, но тем не менее каждый лист развивался бы из отдельной клетки его собственной основы. Поэтому листья могли бы быть клоном клеток, более близко связанных друг с другом, чем с другими клетками растения. Учитывая обычность соматических мутаций у растений (Whitliam & Slobodchikoff в прессе), разве нельзя ли представить себе эволюцию совершенной сложной адаптации на уровне листьев, а может и на уровне всего растения? Генетик теперь мог бы различать генетически гетерогенную популяцию листьев, каждый из которых состоял бы из генетически однородных клеток, и разве естественный отбор не мог бы продолжаться между успешными и неуспешными листьями? Было бы неплохо, если бы ответ на этот вопрос бы положительным; то есть – если бы мы смогли утверждать, что отбор носителей продолжится на любом уровне в иерархии многоклеточных единиц, при условии, что клетки в этой единице как правило генетически едины в сравнении с клетками в других единицах того же уровня. К сожалению однако, в нашем рассуждении было кое‑что упущено.

Вспомним, что я расклассифицировал репликаторы на репликаторы зародышевой линии, и репликаторы тупиковой линии. Естественный отбор приводит к тому, что некоторые репликаторы становятся более многочисленным за счёт конкурирующих, но это приводит к эволюционным изменения только тогда, когда эти репликаторы принадлежат зародышевым линиям. Многоклеточная единица квалифицируется как носитель (в эволюционно интересном смысле), только тогда, когда по крайней мере некоторые из её клеток содержат репликаторы зародышевой линии. Листья обычно так не квалифицируются, поскольку ядра их клеток содержат лишь репликаторы тупиковой линии. Клетки листьев синтезируют химические вещества, которые в конечном счёте приносят пользу другим клеткам, которые уже содержат копии генов листьев зародышевой линии, генов, которые придали листьям их характерный «листовой» фенотип. Но мы не можем согласиться с заключением предыдущего параграфа, что межлистьевой отбор носителей, как и отбор между органами вообще, мог бы идти лишь потому, что клетки органа были бы более близкими митотическими родственниками, чем клетки в других органах. Отбор среди листьев мог бы иметь эволюционные последствия только тогда, когда листья могли бы непосредственно порождать дочерние листья. Листья – это органы, а не организмы. Чтобы отбор между органами имел место, необходимо, чтобы соответствующие органы имели бы свои собственные зародышевые линии, осуществляли бы своё собственное репродуцирование, чего они обычно не делают. Органы – это части организмов, а воспроизводство – прерогатива организмов.

Для наглядности я немного утрировал. Между моими двумя земляникоподобными растениями мог существовать диапазон промежуточных звеньев. Побег вида М был постулирован массивной меристемой, а побег вида S был сужен до одноклеточного начала, лежащего в основе каждого нового растения. Но что если принять промежуточный вид с двухклеточным началом, лежащим в основе каждого нового растения? Здесь открываются две главные возможности. Если схема развития такова, что будет невозможно предсказать, от какой из двух клеток побега какие клетки дочернего растения будут происходить, то мысль, которую я высказал насчёт всех узких местах развития, будет просто ослаблена количественно: генетические мозаики могут наблюдаться в популяции растений, но тем не менее будет иметь место статистическая тенденция большей генетической близости клеток к своему приятелю на том же растении, чем к клеткам на других растениях. Поэтому мы всё ещё сможем многозначительно говорить об отборе носителей между растениями в популяции растений, но давлениям отбора между растениями, придётся вероятно быть более сильным, чтобы перевесить отбор между клетками в растениях. Это условие, кстати аналогично одному из условий для работы «группового и родственного отбора» (Гамильтон 1975a). Для усиления аналогии нам лишь нужно рассматривать растение как «группу» клеток.

Вторая возможность, вытекающая из предположения о двухклеточном начале в основе каждого растения появляется тогда, когда схема развития вида была бы такой, что некоторые органы растения всегда были бы митотическими потомками одной из этих двух клеток. Например, клетки корневой системы могли бы развиваться из клетки в низкой части побега, а остальная часть растения развивалась бы из другой клетки, в верхней части побега. Далее, если бы низкая клетка всегда происходила бы от клетки корня родительского растения, а верхняя клетка была бы завербована наземной клеткой родительского растения, то мы бы имели интересную ситуацию. Корневые клетки были бы более близкими родственниками к другим корневым клеткам во всей популяции, чем к клеткам стебля и листьев их «собственного» растения. Мутации открыли бы возможность эволюционных изменений, но это будет эволюция на уровне раскола. Подземные генотипы могли бы развиваться в другую сторону от надземных, независимо от очевидного единого членства по отношению к дискретным «растениям». Теоретически даже могло бы иметь место своего рода внутриорганизменное «видообразование».

Резюмируем. Суть различий между ростом и воспроизводством в том, что воспроизводство даёт возможность начать сначала новый цикл развития, а новый полученный так организм может быть совершеннее своего предшественника в смысле фундаментальной организации сложной структуры. Конечно, этого совершенства может не быть, если его генетический базис будет ликвидирован естественным отбором. Но рост без воспроизводства даже не предоставляет возможностей для радикальных перемен на уровне органа, как в направлении улучшения, так и регресса. Он позволяет только наскоро латать заплаты. Вы можете изменить процесс «развития» Бентли, дабы он вырос в полноразмерный Роллс‑Ройс, просто вмешавшись в процесс сборки на поздней стадии, где уже смонтирован радиатор[40]. Но если вы захотите переделать Форд в Роллс‑Ройс, то вы должны будете начать с чистого листа – вообще до того, как автомобиль начнёт «расти» на сборочной линии. Смысл повторяющихся репродуктивных циклов в жизни, и следовательно, их значения для организмов в том, что они позволяют повторно возвращаться к чистому листу на протяжении эволюционного времени.

Здесь нам нужно остерегаться ереси «биотического» адаптационизма (Williams 1966). Мы видели, что повторяющиеся репродуктивные циклы жизни, то есть – «организмы», делают возможной эволюцию сложных органов. Всё это слишком заманчиво трактовать как достаточное адаптивное объяснение существования организменных циклов жизни – дескать сложные органы (в некотором расплывчатом смысле) – хорошая идея. Близкая идея состоит в том, что повторяющаяся репродукция возможен только в случае смертности индивидуумов (Мейнард Смит 1969), но мы не должны впадать в соблазн утверждения о том, что смертность индивидуумов – адаптация, призванная поддерживать ход эволюции! То же самое можно сказать о мутациях: их наличие – необходимое базовое условие для работы эволюции, однако весьма вероятно, что естественный отбор одобрил бы эволюцию в направлении нулевого темпа мутаций – к счастью недостижимого (Williams 1966). Такой жизненный цикл: рост‑воспроизводство‑смерть, типичный для многоклеточного клонального «организма» – имел далеко идущие последствия, и был вероятно основой для эволюции адаптивной сложности, но это утверждение не эквивалентно адаптивному объяснению существования такого цикла жизни. Дарвинист должен начать с поисков немедленной выгоды для генов, реализующим именно такой цикл жизни – за счёт их аллелей. Он может продолжать соглашаться с возможностью существования других уровней отбора, скажем – дифференциального вымирания линий. Но он должен демонстрировать такую же осмотрительность в этой трудной теоретической области, какую демонстрировали Фишер(1930a), Вильямс (1975) и Мейнард Смит (1978a) по отношению к аналогичным предположениям о половом размножении как средстве ускорения эволюции.

Организм обладает следующими признаками. Он может быть или единственной клеткой, или многоклеточным – при условии что все его клетки являются генетическими родственниками друг друга: они происходят от единственной плодовой клетки, что означает, что у их наиболее близкий по времени общий предок ближе к ним, чем к клеткам любого другого организма. Организм – единица с таким циклом жизни, который, как бы он ни был сложен, повторяет фундаментальные характеристики предыдущих циклов жизни, и может быть более совершенным, чем предыдущие циклы жизни. Организм либо состоит из клеток зародышевой линии, либо содержит клетки зародышевой линии в качестве подмножества своих клеток, либо, как в случае с бесплодными социальными рабочими насекомыми, имеет возможность действовать во благо клеток зародышевой линии близкородственных организмов.

В этой конечной главе я не стремился дать полностью удовлетворительный ответ на вопрос, почему существуют большие многоклеточные организмы. Я буду рад, если я смог возбудить новое любопытство в этом вопросе. Вместо того, чтобы принять существование и вопросить, как адаптация приносит пользу организмам, ею обладающим, я старался показать, что само существование организмов должно быть истолковано как феномен, сам по себе заслуживающий объяснения. Репликаторы существуют, и это фундаментально. Фенотипические проявления их, включая расширенные, следует рассматривать как функционирующие инструменты, служащие цели поддержки существования репликаторов. Организмы – огромные и сложные собрания таких инструментов, собрания разделяемые бригадами репликаторов, которым в принципе не нужно существовать вместе, но фактически существующих вместе – ибо имеющих общий интерес в деле выживания и воспроизводства организма. Привлекая внимание к феномену организма как сущности, нуждающейся в объяснении, я старался в этой главе сделать набросок общего направления, куда бы мы могли бы двигаться в поиске объяснения. Это только предварительный эскиз, но он стоит того, чтобы его здесь резюмировать.

Существующие репликаторы – скорее всего те, которым хорошо удаётся манипулировать миром во имя их собственных преимуществ. Практикуя это, они эксплуатируют возможности, предоставляемые их окружающими средами, и важный аспект окружающей среды репликатора – другие репликаторы и их фенотипические проявления. Успешные репликаторы проявляют выгодные фенотипические эффекты лишь на фоне присутствия других репликаторов, которые оказались широко распространёнными. Эти другие репликаторы также успешны, иначе они не были бы широко распространены. Поэтому мир стремится к тому, чтобы стать населённым взаимно совместимыми наборами успешных репликаторов, репликаторов, которые хорошо преуспевают вместе. В принципе это относится к репликаторам в различных генофондах, различных таксономических видах, классах, типах и царствах. Но отношения особо близкой взаимной совместимости сформировались между поднаборами репликаторов, сосуществующих в ядрах клеток, и там, где наличие полового размножения делает экспрессию значимой, разделяющими генофонды.

Ядро клетки – как популяция тревожно сожительствующих репликаторов – знаменательное явление само по себе. Столь же знаменательным, хотя и весьма отличным, является феномен многоклеточного клонирования, феномен многоклеточного организма. Репликаторы, эффекты которых взаимодействуют с эффектами других репликаторов, приводя к появлению многоклеточных организмов, создают для себя носителей со сложными органами и поведением. Сложные органы и поведение одобряются в гонках вооружений. Эволюция сложных органов и поведения возможна потому, что организм – сущность с повторяющимся циклом жизни, и каждый новый цикл начинается с единственной клетки. Факт рестарта цикла в каждом поколении с единственной клетки позволяет мутациям производить радикальные эволюционные изменения, путём «возвращения к чистому листу» эмбриогенетического проектирования. Также – концентрируя усилия всех клеток организма на благосостоянии небольшой, общей для всех зародышевой линии, частично отбивает у мошенников «искушение» действовать во имя их собственного личного блага за счёт других репликаторов, разделяющих ту же самую зародышевую линию. Объединённый многоклеточный организм – явление, которое появилось в результате естественного отбора первозданно независимых эгоистичных репликаторов. Он отблагодарил репликаторы за общительное поведение. Фенотипическая власть, посредством которой они гарантируют своё выживание, в принципе неограниченна. Практически организм возник как частично ограниченная локальная концентрация, совместный узел власти репликатора.

 




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 272; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.